Math Problem Statement

Prove using nEN that n3+2 will never be divisible by 8

Solution

To prove that n3+2n^3 + 2 will never be divisible by 8 for any nNn \in \mathbb{N}, we can examine the expression n3+2n^3 + 2 modulo 8.

Step 1: Check the possible values of nmod8n \mod 8

For any integer nn, there are 8 possible values for nmod8n \mod 8 (0, 1, 2, 3, 4, 5, 6, 7). We will compute n3+2mod8n^3 + 2 \mod 8 for each of these values and verify if any of them can result in 0 (i.e., n3+20mod8n^3 + 2 \equiv 0 \mod 8).

Step 2: Compute n3+2mod8n^3 + 2 \mod 8 for each nmod8n \mod 8

  • If n0mod8n \equiv 0 \mod 8: n3+2=03+2=22mod8n^3 + 2 = 0^3 + 2 = 2 \equiv 2 \mod 8

  • If n1mod8n \equiv 1 \mod 8: n3+2=13+2=1+2=33mod8n^3 + 2 = 1^3 + 2 = 1 + 2 = 3 \equiv 3 \mod 8

  • If n2mod8n \equiv 2 \mod 8: n3+2=23+2=8+2=102mod8n^3 + 2 = 2^3 + 2 = 8 + 2 = 10 \equiv 2 \mod 8

  • If n3mod8n \equiv 3 \mod 8: n3+2=33+2=27+2=295mod8n^3 + 2 = 3^3 + 2 = 27 + 2 = 29 \equiv 5 \mod 8

  • If n4mod8n \equiv 4 \mod 8: n3+2=43+2=64+2=662mod8n^3 + 2 = 4^3 + 2 = 64 + 2 = 66 \equiv 2 \mod 8

  • If n5mod8n \equiv 5 \mod 8: n3+2=53+2=125+2=1277mod8n^3 + 2 = 5^3 + 2 = 125 + 2 = 127 \equiv 7 \mod 8

  • If n6mod8n \equiv 6 \mod 8: n3+2=63+2=216+2=2182mod8n^3 + 2 = 6^3 + 2 = 216 + 2 = 218 \equiv 2 \mod 8

  • If n7mod8n \equiv 7 \mod 8: n3+2=73+2=343+2=3451mod8n^3 + 2 = 7^3 + 2 = 343 + 2 = 345 \equiv 1 \mod 8

Step 3: Conclusion

From the computations above, we see that for all possible values of nmod8n \mod 8, the expression n3+2n^3 + 2 is never congruent to 0 modulo 8. Specifically, the possible remainders are 1, 2, 3, 5, or 7, but never 0.

Therefore, n3+2n^3 + 2 is never divisible by 8 for any nNn \in \mathbb{N}.


Would you like any further details or have any questions about this proof?

Here are 5 questions related to this:

  1. Can you prove a similar statement for n32n^3 - 2?
  2. What happens if you check n3+3n^3 + 3 modulo 8?
  3. Can you generalize this type of proof to other moduli, such as 4 or 16?
  4. How does this proof change if nZn \in \mathbb{Z} instead of nNn \in \mathbb{N}?
  5. Can n3+2n^3 + 2 ever be divisible by a prime greater than 8?

Tip: When working with modular arithmetic, computing small powers modulo a number often helps in spotting patterns for proofs.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Theory
Modular Arithmetic

Formulas

n^3 + 2 mod 8

Theorems

Modular Arithmetic Theorem

Suitable Grade Level

Grades 10-12