Math Problem Statement

Show that n^3 + 2n is divisible by 3 for all n > 0, n ∈ Z^+.

Solution

To prove that n3+2nn^3 + 2n is divisible by 3 for all n>0n > 0 and nZ+n \in \mathbb{Z}^+, we can approach this problem by examining nn modulo 3.

For any integer nn, it will satisfy one of the following cases in modulo 3:

  1. n0(mod3)n \equiv 0 \pmod{3}
  2. n1(mod3)n \equiv 1 \pmod{3}
  3. n2(mod3)n \equiv 2 \pmod{3}

We will analyze each case to check if n3+2n0(mod3)n^3 + 2n \equiv 0 \pmod{3}, ensuring it is divisible by 3 in all scenarios.

Case 1: n0(mod3)n \equiv 0 \pmod{3}

If n0(mod3)n \equiv 0 \pmod{3}, then: n3030(mod3)n^3 \equiv 0^3 \equiv 0 \pmod{3} and 2n200(mod3).2n \equiv 2 \cdot 0 \equiv 0 \pmod{3}. Thus, n3+2n0+00(mod3).n^3 + 2n \equiv 0 + 0 \equiv 0 \pmod{3}. In this case, n3+2nn^3 + 2n is divisible by 3.

Case 2: n1(mod3)n \equiv 1 \pmod{3}

If n1(mod3)n \equiv 1 \pmod{3}, then: n3131(mod3)n^3 \equiv 1^3 \equiv 1 \pmod{3} and 2n212(mod3).2n \equiv 2 \cdot 1 \equiv 2 \pmod{3}. Thus, n3+2n1+230(mod3).n^3 + 2n \equiv 1 + 2 \equiv 3 \equiv 0 \pmod{3}. In this case, ( n

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Modulo Arithmetic
Divisibility Rules
Polynomials

Formulas

n^3 + 2n

Theorems

Divisibility by 3 using Modulo 3 Cases

Suitable Grade Level

Grades 10-12