Math Problem Statement

Suppose n e Z. prove the following: a) if 8∤(n^2 -1), then n is even. b)if 3 ∤(n^2 -1), then 3|n

Solution

Let's tackle these proofs separately.

Part (a): If 8(n21)8 \nmid (n^2 - 1), then nn is even.

Proof:

  1. Consider the possible values of nn modulo 88: For any integer nn, nn modulo 88 can take values 0,1,2,3,4,5,6,0, 1, 2, 3, 4, 5, 6, or 77.

  2. Calculate n21n^2 - 1 modulo 88 for each case:

    • If n0(mod8)n \equiv 0 \pmod{8}, then n2102117(mod8)n^2 - 1 \equiv 0^2 - 1 \equiv -1 \equiv 7 \pmod{8}.
    • If n1(mod8)n \equiv 1 \pmod{8}, then n211210(mod8)n^2 - 1 \equiv 1^2 - 1 \equiv 0 \pmod{8}.
    • If n2(mod8)n \equiv 2 \pmod{8}, then n21221413(mod8)n^2 - 1 \equiv 2^2 - 1 \equiv 4 - 1 \equiv 3 \pmod{8}.
    • If n3(mod8)n \equiv 3 \pmod{8}, then n213219180(mod8)n^2 - 1 \equiv 3^2 - 1 \equiv 9 - 1 \equiv 8 \equiv 0 \pmod{8}.
    • If n4(mod8)n \equiv 4 \pmod{8}, then n21421161157(mod8)n^2 - 1 \equiv 4^2 - 1 \equiv 16 - 1 \equiv 15 \equiv 7 \pmod{8}.
    • If n5(mod8)n \equiv 5 \pmod{8}, then n21521251240(mod8)n^2 - 1 \equiv 5^2 - 1 \equiv 25 - 1 \equiv 24 \equiv 0 \pmod{8}.
    • If n6(mod8)n \equiv 6 \pmod{8}, then n21621361353(mod8)n^2 - 1 \equiv 6^2 - 1 \equiv 36 - 1 \equiv 35 \equiv 3 \pmod{8}.
    • If n7(mod8)n \equiv 7 \pmod{8}, then n21721491480(mod8)n^2 - 1 \equiv 7^2 - 1 \equiv 49 - 1 \equiv 48 \equiv 0 \pmod{8}.
  3. Identify when 8(n21)8 \nmid (n^2 - 1):

    • We see that n210(mod8)n^2 - 1 \equiv 0 \pmod{8} if n1n \equiv 1, 33, 55, or 77 modulo 88, which correspond to odd values of nn.
    • Conversely, when n0n \equiv 0, 22, 44, or 66 modulo 88, nn is even, and 8(n21)8 \nmid (n^2 - 1).

Therefore, if 8(n21)8 \nmid (n^2 - 1), then nn must be even.


Part (b): If 3(n21)3 \nmid (n^2 - 1), then 3n3 \mid n.

Proof:

  1. Consider the possible values of nn modulo 33: For any integer nn, nn modulo 33 can take values 00, 11, or 22.

  2. Calculate n21n^2 - 1 modulo 33 for each case:

    • If n0(mod3)n \equiv 0 \pmod{3}, then n2102112(mod3)n^2 - 1 \equiv 0^2 - 1 \equiv -1 \equiv 2 \pmod{3}.
    • If n1(mod3)n \equiv 1 \pmod{3}, then n211210(mod3)n^2 - 1 \equiv 1^2 - 1 \equiv 0 \pmod{3}.
    • If n2(mod3)n \equiv 2 \pmod{3}, then n212214130(mod3)n^2 - 1 \equiv 2^2 - 1 \equiv 4 - 1 \equiv 3 \equiv 0 \pmod{3}.
  3. Identify when 3(n21)3 \nmid (n^2 - 1):

    • We see that n210(mod3)n^2 - 1 \equiv 0 \pmod{3} if n1n \equiv 1 or 22 modulo 33, which correspond to cases where 33 does not divide nn.
    • Conversely, when n0(mod3)n \equiv 0 \pmod{3}, nn is divisible by 33, and 3(n21)3 \nmid (n^2 - 1).

Therefore, if 3(n21)3 \nmid (n^2 - 1), then 3n3 \mid n.


Would you like further details or have any questions?


Additional Questions

  1. What are alternative methods to prove part (a)?
  2. How can we extend this proof for other primes besides 33 and 88?
  3. What does this proof suggest about divisibility rules for powers of integers?
  4. Can modular arithmetic properties be used to prove similar divisibility conditions?
  5. How does this proof relate to congruences in number theory?

Tip

Understanding proofs by exhaustion for modular cases can simplify divisibility proofs, especially with small moduli like 88 or 33.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Theory
Modular Arithmetic
Divisibility

Formulas

n^2 - 1 (mod k) where k = 8 or 3

Theorems

Divisibility Rules
Modular Arithmetic

Suitable Grade Level

Grades 11-12