Math Problem Statement
if sin alpha + sin beta = a and cos alpha + cos beta = b then show that cos (alpha + beta) = (b^2 - a^2)/(b^2+a^2)
with grade 11 trigonometric identities
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Trigonometric Identities
Sum and Difference Formulas
Formulas
sin α + sin β = 2 sin((α + β)/2) cos((α - β)/2)
cos α + cos β = 2 cos((α + β)/2) cos((α - β)/2)
cos(α + β) = cos α cos β - sin α sin β
sin^2 x + cos^2 x = 1
Theorems
Pythagorean Identity
Sum and Difference Formulas
Suitable Grade Level
Grade 11
Related Recommendation
Trigonometric Expression for cos(α - β) in Terms of a and b
Proving cos(alpha + beta) for Trigonometric Roots Equation
Proving Trigonometric Identity: sin(θ) + cos(θ) = (a + b) / (a - b)
Prove cos(α - β) = 5/13 using Trigonometric Identities
Proving the Identity sin(α + β) sin(α - β) = sin²(α) - sin²(β)