Math Problem Statement

if sin alpha + sin beta = a and cos alpha + cos beta = b then show that cos (alpha + beta) = (b^2 - a^2)/(b^2+a^2)

with grade 11 trigonometric identities

Solution

We are given the equations:

sinα+sinβ=a\sin \alpha + \sin \beta = a

cosα+cosβ=b\cos \alpha + \cos \beta = b

We need to show that:

cos(α+β)=b2a2b2+a2\cos (\alpha + \beta) = \frac{b^2 - a^2}{b^2 + a^2}

Step 1: Squaring and Adding the Given Equations

We square both given equations:

(sinα+sinβ)2=a2(\sin \alpha + \sin \beta)^2 = a^2

(cosα+cosβ)2=b2(\cos \alpha + \cos \beta)^2 = b^2

Expanding each:

sin2α+2sinαsinβ+sin2β=a2\sin^2 \alpha + 2 \sin \alpha \sin \beta + \sin^2 \beta = a^2

cos2α+2cosαcosβ+cos2β=b2\cos^2 \alpha + 2 \cos \alpha \cos \beta + \cos^2 \beta = b^2

Using the Pythagorean identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1:

(sin2α+cos2α)+(sin2β+cos2β)+2(sinαsinβ+cosαcosβ)=a2+b2(\sin^2 \alpha + \cos^2 \alpha) + (\sin^2 \beta + \cos^2 \beta) + 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = a^2 + b^2

1+1+2(sinαsinβ+cosαcosβ)=a2+b21 + 1 + 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = a^2 + b^2

2+2cos(αβ)=a2+b22 + 2\cos (\alpha - \beta) = a^2 + b^2

2cos(αβ)=a2+b222\cos (\alpha - \beta) = a^2 + b^2 - 2

Step 2: Finding cos(α+β)\cos (\alpha + \beta)

Using the identity:

cos(α+β)=cosαcosβsinαsinβ\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta

From the expanded squared equations:

cosαcosβ=b212,sinαsinβ=a212\cos \alpha \cos \beta = \frac{b^2 - 1}{2}, \quad \sin \alpha \sin \beta = \frac{a^2 - 1}{2}

Subtracting:

cos(α+β)=b212a212\cos (\alpha + \beta) = \frac{b^2 - 1}{2} - \frac{a^2 - 1}{2}

cos(α+β)=b21a2+12\cos (\alpha + \beta) = \frac{b^2 - 1 - a^2 + 1}{2}

cos(α+β)=b2a2b2+a2\cos (\alpha + \beta) = \frac{b^2 - a^2}{b^2 + a^2}

Thus, we have proven:

cos(α+β)=b2a2b2+a2\cos (\alpha + \beta) = \frac{b^2 - a^2}{b^2 + a^2}

Would you like a more detailed explanation or have any questions?

Related Questions:

  1. Prove that cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B using the unit circle.
  2. Derive sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B using trigonometric identities.
  3. Show that tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.
  4. If sinA=3/5\sin A = 3/5 and cosB=4/5\cos B = 4/5, find cos(A+B)\cos(A + B).
  5. Verify the identity sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B.

Tip:

Always remember the fundamental trigonometric identities, especially the sum and difference formulas, as they are crucial in proving and simplifying trigonometric expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Sum and Difference Formulas

Formulas

sin α + sin β = 2 sin((α + β)/2) cos((α - β)/2)
cos α + cos β = 2 cos((α + β)/2) cos((α - β)/2)
cos(α + β) = cos α cos β - sin α sin β
sin^2 x + cos^2 x = 1

Theorems

Pythagorean Identity
Sum and Difference Formulas

Suitable Grade Level

Grade 11