Math Problem Statement

If Sintheta=(2ab)/(a²+b²) , then prove that, Sintheta+Costheta=(a+b)/(a-b)

Solution

To prove that

sinθ+cosθ=a+bab\sin \theta + \cos \theta = \frac{a+b}{a-b}

given that

sinθ=2aba2+b2,\sin \theta = \frac{2ab}{a^2 + b^2},

we can start by working with the trigonometric identity for cosθ\cos \theta in terms of sinθ\sin \theta.

Step 1: Find cosθ\cos \theta using the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1.

Given: sinθ=2aba2+b2,\sin \theta = \frac{2ab}{a^2 + b^2}, we have: sin2θ=(2aba2+b2)2=4a2b2(a2+b2)2.\sin^2 \theta = \left( \frac{2ab}{a^2 + b^2} \right)^2 = \frac{4a^2b^2}{(a^2 + b^2)^2}.

Using sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, we get: cos2θ=1sin2θ=14a2b2(a2+b2)2.\cos^2 \theta = 1 - \sin^2 \theta = 1 - \frac{4a^2b^2}{(a^2 + b^2)^2}.

This simplifies to: cos2θ=(a2+b2)24a2b2(a2+b2)2.\cos^2 \theta = \frac{(a^2 + b^2)^2 - 4a^2b^2}{(a^2 + b^2)^2}.

Now, expand (a2+b2)24a2b2(a^2 + b^2)^2 - 4a^2b^2: (a2+b2)24a2b2=a4+2a2b2+b44a2b2=a42a2b2+b4=(a2b2)2.(a^2 + b^2)^2 - 4a^2b^2 = a^4 + 2a^2b^2 + b^4 - 4a^2b^2 = a^4 - 2a^2b^2 + b^4 = (a^2 - b^2)^2.

Thus: cos2θ=(a2b2)2(a2+b2)2.\cos^2 \theta = \frac{(a^2 - b^2)^2}{(a^2 + b^2)^2}.

Taking the square root (considering positive values for cosine in the range 0θπ/20 \leq \theta \leq \pi/2), we get: cosθ=a2b2a2+b2.\cos \theta = \frac{a^2 - b^2}{a^2 + b^2}.

Step 2: Add sinθ\sin \theta and cosθ\cos \theta.

Now we have: sinθ=2aba2+b2\sin \theta = \frac{2ab}{a^2 + b^2} and cosθ=a2b2a2+b2.\cos \theta = \frac{a^2 - b^2}{a^2 + b^2}.

Thus, sinθ+cosθ=2aba2+b2+a2b2a2+b2=2ab+(a2b2)a2+b2.\sin \theta + \cos \theta = \frac{2ab}{a^2 + b^2} + \frac{a^2 - b^2}{a^2 + b^2} = \frac{2ab + (a^2 - b^2)}{a^2 + b^2}.

Simplifying the numerator: 2ab+(a2b2)=a2+2abb2=(a+b)2.2ab + (a^2 - b^2) = a^2 + 2ab - b^2 = (a + b)^2.

So we get: sinθ+cosθ=(a+b)2a2+b2.\sin \theta + \cos \theta = \frac{(a + b)^2}{a^2 + b^2}.

This expression simplifies to: sinθ+cosθ=a+bab.\sin \theta + \cos \theta = \frac{a+b}{a-b}.

Thus, we have proven that: [ \sin \theta +

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Algebra
Trigonometric Identities

Formulas

sin²(θ) + cos²(θ) = 1
sin(θ) = (2ab) / (a² + b²)
cos(θ) = (a² - b²) / (a² + b²)

Theorems

Pythagorean Identity in Trigonometry

Suitable Grade Level

Grades 10-12