Math Problem Statement

If sin α + sin β = a and cos α + cos β = b, find cos(α - β) in terms of a and b.

Solution

From the problem statement, we are given:

sinα+sinβ=a\sin \alpha + \sin \beta = a cosα+cosβ=b\cos \alpha + \cos \beta = b

To find cos(αβ)\cos(\alpha - \beta), we can use the identity:

cos(αβ)=cosαcosβ+sinαsinβ\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta

However, first we need to find expressions for cosαcosβ\cos \alpha \cos \beta and sinαsinβ\sin \alpha \sin \beta.

Step 1: Square both equations

(sinα+sinβ)2=a2(\sin \alpha + \sin \beta)^2 = a^2 (cosα+cosβ)2=b2(\cos \alpha + \cos \beta)^2 = b^2

Step 2: Expand the squares using trigonometric identities

Using the identities for the sum of trigonometric functions: sin2α+2sinαsinβ+sin2β=a2\sin^2 \alpha + 2 \sin \alpha \sin \beta + \sin^2 \beta = a^2 cos2α+2cosαcosβ+cos2β=b2\cos^2 \alpha + 2 \cos \alpha \cos \beta + \cos^2 \beta = b^2

Step 3: Simplify using sin2+cos2=1\sin^2 + \cos^2 = 1

Assuming α\alpha and β\beta are angles in the same function domain, then: sin2α+sin2β=1cos2α+1cos2β=2(cos2α+cos2β)\sin^2 \alpha + \sin^2 \beta = 1 - \cos^2 \alpha + 1 - \cos^2 \beta = 2 - (\cos^2 \alpha + \cos^2 \beta)

Therefore: 2(1sin2α+1sin2β)=a22 - (1 - \sin^2 \alpha + 1 - \sin^2 \beta) = a^2 2(2(b22cosαcosβ))=a22 - (2 - (b^2 - 2 \cos \alpha \cos \beta)) = a^2

Rearranging terms, we find: 1+cosαcosβ=b2+a221 + \cos \alpha \cos \beta = \frac{b^2 + a^2}{2} cosαcosβ=b2+a221\cos \alpha \cos \beta = \frac{b^2 + a^2}{2} - 1

Step 4: Use sum-to-product identities

From the sum-to-product identities: 2sinαsinβ=a2(2b2+2cosαcosβ)2 \sin \alpha \sin \beta = a^2 - (2 - b^2 + 2 \cos \alpha \cos \beta) 2sinαsinβ=a22+b2(b2+a22)2 \sin \alpha \sin \beta = a^2 - 2 + b^2 - (b^2 + a^2 - 2) sinαsinβ=a2+b222\sin \alpha \sin \beta = \frac{a^2 + b^2 - 2}{2}

Step 5: Combine to find cos(αβ)\cos(\alpha - \beta)

cos(αβ)=cosαcosβ+sinαsinβ\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta cos(αβ)=(b2+a221)+(a2+b222)\cos(\alpha - \beta) = \left(\frac{b^2 + a^2}{2} - 1\right) + \left(\frac{a^2 + b^2 - 2}{2}\right) cos(αβ)=a2+b22\cos(\alpha - \beta) = a^2 + b^2 - 2

This is the expression for cos(αβ)\cos(\alpha - \beta) in terms of aa and bb. Would you like more details or do you have any further questions?

Here are some related questions you might find interesting:

  1. What would be the value of sin(αβ)\sin(\alpha - \beta) given the same conditions?
  2. How would you determine α+β\alpha + \beta using aa and bb?
  3. Can you derive expressions for tan(αβ)\tan(\alpha - \beta) from these conditions?
  4. How would the solution change if α\alpha and β\beta were angles in different quadrants?
  5. How can you verify the correctness of the expression for cos(αβ)\cos(\alpha - \beta)?

Tip: Always check if α\alpha and β\beta satisfy the basic trigonometric identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 when working on problems involving multiple angle formulas. This can help identify errors in algebraic manipulation or assumptions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric identities
Sum and difference formulas

Formulas

cos(α - β) = cos α cos β + sin α sin β
(sin α + sin β)^2 = a^2
(cos α + cos β)^2 = b^2
sin^2 α + cos^2 α = 1

Theorems

Pythagorean identity
Sum-to-product identities
Cosine difference identity

Suitable Grade Level

Grades 11-12