Math Problem Statement

Prove the trigonometric identity: sin(α + β) sin(α - β) = sin²(α) - sin²(β)

Solution

The image shows a trigonometric identity to prove:

sin(α+β)sin(αβ)=sin2(α)sin2(β)\sin(\alpha + \beta) \sin(\alpha - \beta) = \sin^2(\alpha) - \sin^2(\beta)

To prove this identity, we can use the following sum and difference formulas for sine:

  • sin(α+β)=sin(α)cos(β)+cos(α)sin(β)\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)
  • sin(αβ)=sin(α)cos(β)cos(α)sin(β)\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)

Step-by-Step Proof:

  1. Expand both sine terms: sin(α+β)sin(αβ)=(sin(α)cos(β)+cos(α)sin(β))(sin(α)cos(β)cos(α)sin(β))\sin(\alpha + \beta) \sin(\alpha - \beta) = (\sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)) (\sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta))

  2. Use the distributive property (FOIL method): =sin(α)cos(β)sin(α)cos(β)sin(α)cos(β)cos(α)sin(β)+cos(α)sin(β)sin(α)cos(β)cos(α)sin(β)cos(α)sin(β)= \sin(\alpha)\cos(\beta) \cdot \sin(\alpha)\cos(\beta) - \sin(\alpha)\cos(\beta) \cdot \cos(\alpha)\sin(\beta) + \cos(\alpha)\sin(\beta) \cdot \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) \cdot \cos(\alpha)\sin(\beta)

  3. Simplify each term: =sin2(α)cos2(β)sin(α)cos(β)cos(α)sin(β)+cos(α)sin(β)sin(α)cos(β)cos2(α)sin2(β)= \sin^2(\alpha)\cos^2(\beta) - \sin(\alpha)\cos(\beta)\cos(\alpha)\sin(\beta) + \cos(\alpha)\sin(\beta)\sin(\alpha)\cos(\beta) - \cos^2(\alpha)\sin^2(\beta)

  4. Combine like terms (notice the middle terms cancel out): =sin2(α)cos2(β)cos2(α)sin2(β)= \sin^2(\alpha)\cos^2(\beta) - \cos^2(\alpha)\sin^2(\beta)

  5. Use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 for each sine and cosine term to express this equation in the form of the required identity: =sin2(α)sin2(β)= \sin^2(\alpha) - \sin^2(\beta)

Thus, we have proven that: sin(α+β)sin(αβ)=sin2(α)sin2(β)\sin(\alpha + \beta) \sin(\alpha - \beta) = \sin^2(\alpha) - \sin^2(\beta)

Let me know if you need more details or further clarification!


Here are some additional questions to explore related concepts:

  1. How would you prove the identity for cos(α+β)cos(αβ)\cos(\alpha + \beta)\cos(\alpha - \beta)?
  2. What is the general method for proving trigonometric identities?
  3. Can this proof be generalized to other trigonometric functions, like tangent or secant?
  4. How can we use this identity to solve trigonometric equations?
  5. What role does the sum-to-product identity play in simplifying trigonometric expressions?

Tip: When dealing with complex trigonometric identities, breaking the expression into smaller parts and applying basic sum/difference formulas can often make the simplification process easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum and Difference Formulas
Sine Function

Formulas

sin(α + β) = sin(α)cos(β) + cos(α)sin(β)
sin(α - β) = sin(α)cos(β) - cos(α)sin(β)
Pythagorean identity: sin²(θ) + cos²(θ) = 1

Theorems

Sum and Difference Formulas for Sine
Pythagorean Identity

Suitable Grade Level

Grades 9-12