Math Problem Statement

Example6.4.3(a)Provethatf:R→Rdefinedby 22x+1[3(5)22(5)+1] 35 3x+5+2<3(|x|+5)+2<3(6+5)+2=35. enableustousetheconditionthat|x5|<δ.So,continuing Oncewehavefactoredoutoneδfromf(x)−f(5)|,we wouldliketoestimateanyfactorassociatedwiththisδby |f(x)f(5)|=|3x ≤3δx+5|+2δ=(3x+5+2)δ. Observethatwedidnotusethenumericalvalueoff(5)= Recallthatwealreadymadetherestrictionthatδ<1. 2−5 . Note:Thetrickinfindingaδ>0liesintheuseofthegiven |f(x)−f(5)≤3|x−5·x+5+2|x−5 Hence, =|3(x Solution:Let>0begiven.Wewanttofindaδ=δ()> 2−2x+1iscontinuousatx=5. )−2(x−5). So,given>0,wechooseδ=min{1, of|f(x)−f(5).Now, dothis.Now,fromx−5|<δwehave wehavethat afactorofx5inourestimateoff(x)f(5)|.Thiswill conditionthatx5<δ,andinthemethodofevaluation 2  3(52 0suchthatifx5|<δthenf(x)f(5)|<. f(x)=3x Herewecanassumeδ<1sothat|x|<6.Withthis, x=x5+5|≤x5|+5<δ+5. 35}.Then, aninteger.Wealwaysusethegivencondition|x5<δto  )−2(5)+1=66.Thisisbecausewewouldliketoget |f(x)f(5)≤(3|x+5+2)δ<35δ=ifδ= f(x)−f(5)<wheneverx−5|<δ,

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Continuity
Epsilon-Delta Definition of Continuity
Linear Functions

Formulas

|f(x) - f(c)| < ε when |x - c| < δ
f(x) = 3x + 5

Theorems

Epsilon-Delta Definition of Continuity

Suitable Grade Level

Grades 11-12