Math Problem Statement

If A = [[-2, 1], [-5, 3]], evaluate A^2 - A. Hence express A^(-1) in terms of A and I.

Solution

We are given the matrix A=[2153]A = \begin{bmatrix} -2 & 1 \\ -5 & 3 \end{bmatrix} and are tasked to:

  1. Evaluate A2AA^2 - A
  2. Express A1A^{-1} in terms of AA and the identity matrix II.

Step 1: Compute A2A^2

To compute A2A^2, we multiply AA by itself:

A2=AA=[2153][2153]A^2 = A \cdot A = \begin{bmatrix} -2 & 1 \\ -5 & 3 \end{bmatrix} \cdot \begin{bmatrix} -2 & 1 \\ -5 & 3 \end{bmatrix}

Performing matrix multiplication:

A2=[(2)(2)+(1)(5)(2)(1)+(1)(3)(5)(2)+(3)(5)(5)(1)+(3)(3)]A^2 = \begin{bmatrix} (-2)(-2) + (1)(-5) & (-2)(1) + (1)(3) \\ (-5)(-2) + (3)(-5) & (-5)(1) + (3)(3) \end{bmatrix}

A2=[452+310155+9]=[1154]A^2 = \begin{bmatrix} 4 - 5 & -2 + 3 \\ 10 - 15 & -5 + 9 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -5 & 4 \end{bmatrix}

Step 2: Compute A2AA^2 - A

Now, subtract AA from A2A^2:

A2A=[1154][2153]A^2 - A = \begin{bmatrix} -1 & 1 \\ -5 & 4 \end{bmatrix} - \begin{bmatrix} -2 & 1 \\ -5 & 3 \end{bmatrix}

A2A=[1+2115+543]=[1001]A^2 - A = \begin{bmatrix} -1 + 2 & 1 - 1 \\ -5 + 5 & 4 - 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Thus, A2A=IA^2 - A = I, the identity matrix.

Step 3: Express A1A^{-1}

From the previous result, we have:

A2A=IA^2 - A = I

This can be rewritten as:

A(AI)=0A(A - I) = 0

Multiplying both sides by A1A^{-1}, we get:

A1=AIA^{-1} = A - I

Thus, the inverse of AA is:

A1=AI=[2153][1001]=[3152]A^{-1} = A - I = \begin{bmatrix} -2 & 1 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -5 & 2 \end{bmatrix}

Summary:

  • A2A=IA^2 - A = I
  • A1=AI=[3152]A^{-1} = A - I = \begin{bmatrix} -3 & 1 \\ -5 & 2 \end{bmatrix}

Would you like more details on any part of the solution?


Here are some related questions:

  1. What are the properties of the inverse of a matrix?
  2. How can we verify if a matrix is invertible?
  3. What other methods can be used to find the inverse of a matrix?
  4. How does the determinant of a matrix relate to its inverse?
  5. Can a non-square matrix have an inverse?

Tip: Always check if the determinant of a matrix is non-zero before attempting to find its inverse.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Matrix Inversion
Identity Matrix

Formulas

Matrix Multiplication: A^2 = A * A
Inverse Matrix: A * A^(-1) = I
Identity Matrix: I = [[1, 0], [0, 1]]

Theorems

Matrix Inversion Theorem

Suitable Grade Level

University Level (Linear Algebra)