Math Problem Statement

Suppose 𝑣1 , … , π‘£π‘š is a list of vectors in 𝑉. For π‘˜ ∈ {1, … , π‘š}, let π‘€π‘˜ = 𝑣1 + β‹― + π‘£π‘˜ . proof that span(𝑣1 , … , π‘£π‘š) = span(𝑀1 , … , π‘€π‘š).

Solution

To prove that span(v1,…,vm)=span(w1,…,wm)\text{span}(v_1, \dots, v_m) = \text{span}(w_1, \dots, w_m), we'll need to show two things:

  1. span(v1,…,vm)βŠ†span(w1,…,wm)\text{span}(v_1, \dots, v_m) \subseteq \text{span}(w_1, \dots, w_m).
  2. span(w1,…,wm)βŠ†span(v1,…,vm)\text{span}(w_1, \dots, w_m) \subseteq \text{span}(v_1, \dots, v_m).

1. Proving span(v1,…,vm)βŠ†span(w1,…,wm)\text{span}(v_1, \dots, v_m) \subseteq \text{span}(w_1, \dots, w_m)

Let v∈span(v1,…,vm)v \in \text{span}(v_1, \dots, v_m). This means that: v=c1v1+c2v2+β‹―+cmvmv = c_1v_1 + c_2v_2 + \dots + c_mv_m for some scalars c1,c2,…,cm∈Fc_1, c_2, \dots, c_m \in \mathbb{F} (where F\mathbb{F} is the field over which the vector space VV is defined).

We will express each vkv_k in terms of wkw_k:

vk=wkβˆ’wkβˆ’1v_k = w_k - w_{k-1} where w0=0w_0 = 0 by convention.

Substituting this into the linear combination for vv, we get: v=c1(v1)+c2(v2)+β‹―+cm(vm)=c1(w1)+c2(w2βˆ’w1)+β‹―+cm(wmβˆ’wmβˆ’1)v = c_1(v_1) + c_2(v_2) + \dots + c_m(v_m) = c_1(w_1) + c_2(w_2 - w_1) + \dots + c_m(w_m - w_{m-1})

Expanding and simplifying: v=(c1βˆ’c2)w1+(c2βˆ’c3)w2+β‹―+(cmβˆ’1βˆ’cm)wmβˆ’1+cmwmv = (c_1 - c_2)w_1 + (c_2 - c_3)w_2 + \dots + (c_{m-1} - c_m)w_{m-1} + c_mw_m

Thus, vv is a linear combination of w1,w2,…,wmw_1, w_2, \dots, w_m, meaning v∈span(w1,…,wm)v \in \text{span}(w_1, \dots, w_m).

Since vv was arbitrary, it follows that: span(v1,…,vm)βŠ†span(w1,…,wm)\text{span}(v_1, \dots, v_m) \subseteq \text{span}(w_1, \dots, w_m)

2. Proving span(w1,…,wm)βŠ†span(v1,…,vm)\text{span}(w_1, \dots, w_m) \subseteq \text{span}(v_1, \dots, v_m)

Let w∈span(w1,…,wm)w \in \text{span}(w_1, \dots, w_m). This means that: w=d1w1+d2w2+β‹―+dmwmw = d_1w_1 + d_2w_2 + \dots + d_mw_m for some scalars d1,d2,…,dm∈Fd_1, d_2, \dots, d_m \in \mathbb{F}.

We know each wkw_k is defined as: wk=v1+v2+β‹―+vkw_k = v_1 + v_2 + \dots + v_k So, substitute this into the linear combination: w=d1(v1)+d2(v1+v2)+β‹―+dm(v1+v2+β‹―+vm)w = d_1(v_1) + d_2(v_1 + v_2) + \dots + d_m(v_1 + v_2 + \dots + v_m)

Expanding this expression: w=(d1+d2+β‹―+dm)v1+(d2+β‹―+dm)v2+β‹―+dmvmw = (d_1 + d_2 + \dots + d_m)v_1 + (d_2 + \dots + d_m)v_2 + \dots + d_mv_m

This shows that ww is a linear combination of v1,v2,…,vmv_1, v_2, \dots, v_m, meaning w∈span(v1,…,vm)w \in \text{span}(v_1, \dots, v_m).

Since ww was arbitrary, it follows that: span(w1,…,wm)βŠ†span(v1,…,vm)\text{span}(w_1, \dots, w_m) \subseteq \text{span}(v_1, \dots, v_m)

Conclusion

Since we have shown both: span(v1,…,vm)βŠ†span(w1,…,wm)\text{span}(v_1, \dots, v_m) \subseteq \text{span}(w_1, \dots, w_m) and span(w1,…,wm)βŠ†span(v1,…,vm)\text{span}(w_1, \dots, w_m) \subseteq \text{span}(v_1, \dots, v_m) it follows that: span(v1,…,vm)=span(w1,…,wm)\text{span}(v_1, \dots, v_m) = \text{span}(w_1, \dots, w_m)

Do you want details or have any questions?

Here are five related questions:

  1. How would this proof change if the vector space VV were infinite-dimensional?
  2. What are the implications of this proof for understanding linear dependence and independence?
  3. Can you construct an example of vectors v1,v2,v3v_1, v_2, v_3 in R2\mathbb{R}^2 and their corresponding w1,w2,w3w_1, w_2, w_3?
  4. How does this result relate to the concept of a basis in a vector space?
  5. What happens to the span equality if one of the vectors vkv_k is the zero vector?

Tip: When dealing with spans of vectors, remember that any linear combination of the vectors in a span can generate other vectors within the same span.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Spaces
Span of Vectors

Formulas

-

Theorems

-

Suitable Grade Level

Advanced Undergraduate