Math Problem Statement

Suppose 𝑣1 , … , π‘£π‘š is a list of vectors in 𝑉. For π‘˜ ∈ {1, … , π‘š}, let π‘€π‘˜ = 𝑣1 + β‹― + π‘£π‘˜ . show that span(𝑣1 , … , π‘£π‘š) = span(𝑀1 , … , π‘€π‘š).

Solution

To prove that span(v1,…,vm)=span(w1,…,wm)\text{span}(v_1, \dots, v_m) = \text{span}(w_1, \dots, w_m), we'll show the following two inclusions:

  1. span(v1,…,vm)βŠ†span(w1,…,wm)\text{span}(v_1, \dots, v_m) \subseteq \text{span}(w_1, \dots, w_m).
  2. span(w1,…,wm)βŠ†span(v1,…,vm)\text{span}(w_1, \dots, w_m) \subseteq \text{span}(v_1, \dots, v_m).

1. Prove span(v1,…,vm)βŠ†span(w1,…,wm)\text{span}(v_1, \dots, v_m) \subseteq \text{span}(w_1, \dots, w_m)

Take any vector v∈span(v1,…,vm)v \in \text{span}(v_1, \dots, v_m). By definition, this means that: v=c1v1+c2v2+β‹―+cmvmv = c_1v_1 + c_2v_2 + \dots + c_mv_m for some scalars c1,c2,…,cmc_1, c_2, \dots, c_m.

Now, we know that each vector wkw_k is defined as: wk=v1+v2+β‹―+vkw_k = v_1 + v_2 + \dots + v_k

We can express vkv_k in terms of the wkw_k vectors as: vk=wkβˆ’wkβˆ’1v_k = w_k - w_{k-1} where w0=0w_0 = 0 by convention.

Substituting this into the expression for vv, we get: v=c1v1+c2v2+β‹―+cmvm=c1w1+c2(w2βˆ’w1)+β‹―+cm(wmβˆ’wmβˆ’1)v = c_1v_1 + c_2v_2 + \dots + c_mv_m = c_1w_1 + c_2(w_2 - w_1) + \dots + c_m(w_m - w_{m-1})

Expanding this: v=c1w1+c2w2βˆ’c2w1+β‹―+cmwmβˆ’cmwmβˆ’1v = c_1w_1 + c_2w_2 - c_2w_1 + \dots + c_mw_m - c_mw_{m-1}

Grouping like terms, we get: v=(c1βˆ’c2)w1+(c2βˆ’c3)w2+β‹―+(cmβˆ’1βˆ’cm)wmβˆ’1+cmwmv = (c_1 - c_2)w_1 + (c_2 - c_3)w_2 + \dots + (c_{m-1} - c_m)w_{m-1} + c_mw_m

Thus, vv is expressed as a linear combination of the wkw_k vectors. Hence, v∈span(w1,…,wm)v \in \text{span}(w_1, \dots, w_m), which proves: span(v1,…,vm)βŠ†span(w1,…,wm)\text{span}(v_1, \dots, v_m) \subseteq \text{span}(w_1, \dots, w_m)

2. Prove span(w1,…,wm)βŠ†span(v1,…,vm)\text{span}(w_1, \dots, w_m) \subseteq \text{span}(v_1, \dots, v_m)

Take any vector w∈span(w1,…,wm)w \in \text{span}(w_1, \dots, w_m). By definition, this means that: w=d1w1+d2w2+β‹―+dmwmw = d_1w_1 + d_2w_2 + \dots + d_mw_m for some scalars d1,d2,…,dmd_1, d_2, \dots, d_m.

Recall that each wkw_k is defined as: wk=v1+v2+β‹―+vkw_k = v_1 + v_2 + \dots + v_k

Substituting this back into the expression for ww: w=d1(v1)+d2(v1+v2)+β‹―+dm(v1+v2+β‹―+vm)w = d_1(v_1) + d_2(v_1 + v_2) + \dots + d_m(v_1 + v_2 + \dots + v_m)

Expanding this expression: w=(d1+d2+β‹―+dm)v1+(d2+d3+β‹―+dm)v2+β‹―+dmvmw = (d_1 + d_2 + \dots + d_m)v_1 + (d_2 + d_3 + \dots + d_m)v_2 + \dots + d_mv_m

This shows that ww is a linear combination of the v1,v2,…,vmv_1, v_2, \dots, v_m vectors. Therefore, w∈span(v1,…,vm)w \in \text{span}(v_1, \dots, v_m), which proves: span(w1,…,wm)βŠ†span(v1,…,vm)\text{span}(w_1, \dots, w_m) \subseteq \text{span}(v_1, \dots, v_m)

Conclusion

Since we have established both inclusions: span(v1,…,vm)βŠ†span(w1,…,wm)\text{span}(v_1, \dots, v_m) \subseteq \text{span}(w_1, \dots, w_m) and span(w1,…,wm)βŠ†span(v1,…,vm)\text{span}(w_1, \dots, w_m) \subseteq \text{span}(v_1, \dots, v_m) it follows that: span(v1,…,vm)=span(w1,…,wm)\text{span}(v_1, \dots, v_m) = \text{span}(w_1, \dots, w_m)

Do you want details or have any questions?

Here are five related questions:

  1. What happens if one or more of the vectors v1,…,vmv_1, \dots, v_m are linearly dependent?
  2. How does this proof extend if the vectors v1,…,vmv_1, \dots, v_m belong to a subspace of VV?
  3. Can you find an example where span(v1,…,vm)\text{span}(v_1, \dots, v_m) is not equal to span(w1,…,wm)\text{span}(w_1, \dots, w_m) in a different context (e.g., using different definitions)?
  4. How would the proof change if wkw_k were defined as wk=vk+vk+1+β‹―+vmw_k = v_k + v_{k+1} + \dots + v_m?
  5. How does the concept of span relate to the idea of basis vectors in a vector space?

Tip: When proving span equalities, try expressing the vectors of one span as linear combinations of the vectors in the other span. This method is often key to establishing the necessary inclusions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Spaces
Span of Vectors
Linear Combinations

Formulas

-

Theorems

-

Suitable Grade Level

Undergraduate Level