Math Problem Statement

Let f: X → Y be a function. Let A1, A2, ..., An be subsets of X. Prove that f(∪_{i=1}^n A_i) = ∪_{i=1}^n f(A_i).

Solution

To prove that f(i=1nAi)=i=1nf(Ai)f \left( \bigcup_{i=1}^n A_i \right) = \bigcup_{i=1}^n f(A_i), let’s go through the proof step by step:


Proof:

Step 1: Show f(i=1nAi)i=1nf(Ai)f \left( \bigcup_{i=1}^n A_i \right) \subseteq \bigcup_{i=1}^n f(A_i)

  • Let yf(i=1nAi)y \in f \left( \bigcup_{i=1}^n A_i \right). By the definition of the image of a set under ff, this means there exists xi=1nAix \in \bigcup_{i=1}^n A_i such that f(x)=yf(x) = y.
  • Since xi=1nAix \in \bigcup_{i=1}^n A_i, there must exist some ii (where 1in1 \leq i \leq n) such that xAix \in A_i.
  • Therefore, f(x)f(Ai)f(x) \in f(A_i), which implies yi=1nf(Ai)y \in \bigcup_{i=1}^n f(A_i).
  • Thus, f(i=1nAi)i=1nf(Ai)f \left( \bigcup_{i=1}^n A_i \right) \subseteq \bigcup_{i=1}^n f(A_i).

Step 2: Show i=1nf(Ai)f(i=1nAi)\bigcup_{i=1}^n f(A_i) \subseteq f \left( \bigcup_{i=1}^n A_i \right)

  • Let yi=1nf(Ai)y \in \bigcup_{i=1}^n f(A_i). By the definition of union, this means there exists some ii (where 1in1 \leq i \leq n) such that yf(Ai)y \in f(A_i).
  • By the definition of the image of a set under ff, this means there exists xAix \in A_i such that f(x)=yf(x) = y.
  • Since xAii=1nAix \in A_i \subseteq \bigcup_{i=1}^n A_i, we have xi=1nAix \in \bigcup_{i=1}^n A_i.
  • Therefore, f(x)=yf(i=1nAi)f(x) = y \in f \left( \bigcup_{i=1}^n A_i \right).
  • Thus, i=1nf(Ai)f(i=1nAi)\bigcup_{i=1}^n f(A_i) \subseteq f \left( \bigcup_{i=1}^n A_i \right).

Step 3: Conclude the equality

  • Since we have shown both f(i=1nAi)i=1nf(Ai)f \left( \bigcup_{i=1}^n A_i \right) \subseteq \bigcup_{i=1}^n f(A_i) and i=1nf(Ai)f(i=1nAi)\bigcup_{i=1}^n f(A_i) \subseteq f \left( \bigcup_{i=1}^n A_i \right), it follows that f(i=1nAi)=i=1nf(Ai).f \left( \bigcup_{i=1}^n A_i \right) = \bigcup_{i=1}^n f(A_i).

Would you like a deeper breakdown of any step or further examples?


Related Questions:

  1. How does this property extend to infinite unions?
  2. What happens if ff is not a well-defined function? Does the equality still hold?
  3. Can this property be applied to intersections instead of unions?
  4. How does the property differ if ff is not surjective?
  5. Could this proof be rewritten using a more set-theoretic notation?

Tip:

When working with proofs involving images of sets, always use the definition of the image explicitly to construct or verify the relationship.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set Theory
Functions and Mappings
Image of a Set

Formulas

f(∪_{i=1}^n A_i) = ∪_{i=1}^n f(A_i)

Theorems

Union Property of Functions
Image Mapping Theorem

Suitable Grade Level

Undergraduate Mathematics