Math Problem Statement

Find the decomposition of a =< −1, 2, 0 > with respect to b =< 2, 0, 1 > i.e. a = a||b + a⊥b. 1

Solution

To find the decomposition of the vector a=1,2,0\mathbf{a} = \langle -1, 2, 0 \rangle with respect to b=2,0,1\mathbf{b} = \langle 2, 0, 1 \rangle, we need to express a\mathbf{a} as the sum of two components: one parallel to b\mathbf{b} and one perpendicular to b\mathbf{b}.

That is, we want to find: a=ab+ab\mathbf{a} = \mathbf{a}_{\parallel \mathbf{b}} + \mathbf{a}_{\perp \mathbf{b}} where:

  • ab\mathbf{a}_{\parallel \mathbf{b}} is the projection of a\mathbf{a} onto b\mathbf{b},
  • ab\mathbf{a}_{\perp \mathbf{b}} is the component of a\mathbf{a} perpendicular to b\mathbf{b}.

Step 1: Find the projection of a\mathbf{a} onto b\mathbf{b}.

The projection of vector a\mathbf{a} onto vector b\mathbf{b} is given by the formula: ab=projba=abbbb\mathbf{a}_{\parallel \mathbf{b}} = \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} where ab\mathbf{a} \cdot \mathbf{b} is the dot product of a\mathbf{a} and b\mathbf{b}, and bb\mathbf{b} \cdot \mathbf{b} is the dot product of b\mathbf{b} with itself.

1.1 Calculate ab\mathbf{a} \cdot \mathbf{b}:

ab=(1)(2)+(2)(0)+(0)(1)=2\mathbf{a} \cdot \mathbf{b} = (-1)(2) + (2)(0) + (0)(1) = -2

1.2 Calculate bb\mathbf{b} \cdot \mathbf{b}:

bb=(2)(2)+(0)(0)+(1)(1)=4+1=5\mathbf{b} \cdot \mathbf{b} = (2)(2) + (0)(0) + (1)(1) = 4 + 1 = 5

1.3 Compute the projection:

ab=25b=252,0,1=45,0,25\mathbf{a}_{\parallel \mathbf{b}} = \frac{-2}{5} \mathbf{b} = \frac{-2}{5} \langle 2, 0, 1 \rangle = \langle \frac{-4}{5}, 0, \frac{-2}{5} \rangle

Step 2: Find the component of a\mathbf{a} perpendicular to b\mathbf{b}.

The component of a\mathbf{a} perpendicular to b\mathbf{b} is given by: ab=aab\mathbf{a}_{\perp \mathbf{b}} = \mathbf{a} - \mathbf{a}_{\parallel \mathbf{b}} Substitute the values of a\mathbf{a} and ab\mathbf{a}_{\parallel \mathbf{b}}: ab=1,2,045,0,25=1+45,20,0+25\mathbf{a}_{\perp \mathbf{b}} = \langle -1, 2, 0 \rangle - \langle \frac{-4}{5}, 0, \frac{-2}{5} \rangle = \langle -1 + \frac{4}{5}, 2 - 0, 0 + \frac{2}{5} \rangle Simplifying: ab=15,2,25\mathbf{a}_{\perp \mathbf{b}} = \langle \frac{-1}{5}, 2, \frac{2}{5} \rangle

Final Answer:

Thus, the decomposition of a\mathbf{a} with respect to b\mathbf{b} is: a=ab+ab=45,0,25+15,2,25\mathbf{a} = \mathbf{a}_{\parallel \mathbf{b}} + \mathbf{a}_{\perp \mathbf{b}} = \langle \frac{-4}{5}, 0, \frac{-2}{5} \rangle + \langle \frac{-1}{5}, 2, \frac{2}{5} \rangle where: ab=45,0,25andab=15,2,25\mathbf{a}_{\parallel \mathbf{b}} = \langle \frac{-4}{5}, 0, \frac{-2}{5} \rangle \quad \text{and} \quad \mathbf{a}_{\perp \mathbf{b}} = \langle \frac{-1}{5}, 2, \frac{2}{5} \rangle

Would you like further clarification on any of the steps, or do you have any questions? Here are some related questions for further exploration:

  1. How would you calculate the angle between two vectors using their dot product?
  2. What is the geometric interpretation of the projection of one vector onto another?
  3. How do you find the magnitude of a vector?
  4. Can the concept of vector projection be applied to other spaces, such as in physics?
  5. What is the relationship between the dot product and orthogonality of vectors?

Tip: The projection of a vector onto another is a key operation in many areas of mathematics and physics, especially in decomposing forces, velocities, and other vector quantities.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Decomposition
Vector Projection
Dot Product
Orthogonality

Formulas

a_parallel_b = (a · b) / (b · b) * b
a_perpendicular_b = a - a_parallel_b

Theorems

Projection theorem
Orthogonality theorem

Suitable Grade Level

Grades 11-12