Math Problem Statement

If X has a Poisson distribution with parameter λ > 0. Find (i) P(X is even) (ii) P(X is odd).

Solution

Given that XX has a Poisson distribution with parameter λ>0\lambda > 0, the probability mass function (PMF) of XX is given by:

P(X=k)=λkeλk!,k=0,1,2,P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots

(i) P(X is even)P(X \text{ is even})

Let P(X is even)=P(X=0)+P(X=2)+P(X=4)+P(X \text{ is even}) = P(X = 0) + P(X = 2) + P(X = 4) + \dots.

This can be expressed as: P(X is even)=k=0P(X=2k)P(X \text{ is even}) = \sum_{k=0}^{\infty} P(X = 2k) P(X is even)=k=0λ2keλ(2k)!P(X \text{ is even}) = \sum_{k=0}^{\infty} \frac{\lambda^{2k} e^{-\lambda}}{(2k)!}

(ii) P(X is odd)P(X \text{ is odd})

Let P(X is odd)=P(X=1)+P(X=3)+P(X=5)+P(X \text{ is odd}) = P(X = 1) + P(X = 3) + P(X = 5) + \dots.

This can be expressed as: P(X is odd)=k=0P(X=2k+1)P(X \text{ is odd}) = \sum_{k=0}^{\infty} P(X = 2k + 1) P(X is odd)=k=0λ2k+1eλ(2k+1)!P(X \text{ is odd}) = \sum_{k=0}^{\infty} \frac{\lambda^{2k+1} e^{-\lambda}}{(2k+1)!}

Simplified Solution Using Generating Functions

To find P(X is even)P(X \text{ is even}) and P(X is odd)P(X \text{ is odd}) more simply, we use the fact that the sum of probabilities for even and odd values should equal 1:

P(X is even)+P(X is odd)=1P(X \text{ is even}) + P(X \text{ is odd}) = 1

Also, using the identity: eλ=k=0λkk!e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}

Consider: eλk=0λ2k(2k)!andeλk=0λ2k+1(2k+1)!e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k)!} \quad \text{and} \quad e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{2k+1}}{(2k+1)!}

By using the generating function for the Poisson distribution, you can derive: P(X is even)=12(1+e2λ)P(X \text{ is even}) = \frac{1}{2} \left(1 + e^{-2\lambda}\right) P(X is odd)=12(1e2λ)P(X \text{ is odd}) = \frac{1}{2} \left(1 - e^{-2\lambda}\right)

Thus, the probabilities are: P(X is even)=12(1+e2λ)P(X \text{ is even}) = \frac{1}{2} \left(1 + e^{-2\lambda}\right) P(X is odd)=12(1e2λ)P(X \text{ is odd}) = \frac{1}{2} \left(1 - e^{-2\lambda}\right)

Summary

  1. P(X is even)=12(1+e2λ)P(X \text{ is even}) = \frac{1}{2} \left(1 + e^{-2\lambda}\right)
  2. P(X is odd)=12(1e2λ)P(X \text{ is odd}) = \frac{1}{2} \left(1 - e^{-2\lambda}\right)

Would you like more details on the derivation, or do you have any questions?


  1. How do you derive the generating function for a Poisson distribution?
  2. Can the result be applied to any specific value of λ\lambda?
  3. What happens when λ\lambda is very large?
  4. How does this relate to the expectation of the distribution?
  5. How would the probabilities change if we consider XX being divisible by 3 instead?

Tip: The Poisson distribution is widely used in scenarios where events occur independently with a constant mean rate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Theory
Poisson Distribution
Generating Functions

Formulas

Poisson distribution PMF
Generating function for Poisson distribution

Theorems

-

Suitable Grade Level

Advanced Undergraduate