Math Problem Statement

GIVEN: F(x)=x²+5x+6,and H(x)=x+2

Given F(x) = x² + 5x + 6, and H(x) = x + 2. Find (F · H)(x), (F ÷ H)(x), and (F + H)(x).

Solution

The problem you provided asks to solve the following, given that F(x)=x2+5x+6F(x) = x^2 + 5x + 6 and H(x)=x+2H(x) = x + 2:

  1. Find (FH)(x)(F \cdot H)(x)
  2. Find (F÷H)(x)(F \div H)(x)
  3. Find (F+H)(x)(F + H)(x)

Let's solve each part step by step.

1. (FH)(x)(F \cdot H)(x)

To find (FH)(x)(F \cdot H)(x), multiply the functions F(x)F(x) and H(x)H(x):

(FH)(x)=F(x)H(x)=(x2+5x+6)(x+2)(F \cdot H)(x) = F(x) \cdot H(x) = (x^2 + 5x + 6) \cdot (x + 2)

Expand the expression:

(FH)(x)=x2x+x22+5xx+5x2+6x+62(F \cdot H)(x) = x^2 \cdot x + x^2 \cdot 2 + 5x \cdot x + 5x \cdot 2 + 6 \cdot x + 6 \cdot 2

Simplifying:

(FH)(x)=x3+2x2+5x2+10x+6x+12=x3+7x2+16x+12(F \cdot H)(x) = x^3 + 2x^2 + 5x^2 + 10x + 6x + 12 = x^3 + 7x^2 + 16x + 12

So:

(FH)(x)=x3+7x2+16x+12(F \cdot H)(x) = x^3 + 7x^2 + 16x + 12

2. (F÷H)(x)(F \div H)(x)

To find (F÷H)(x)(F \div H)(x), divide F(x)F(x) by H(x)H(x):

(F÷H)(x)=F(x)H(x)=x2+5x+6x+2(F \div H)(x) = \frac{F(x)}{H(x)} = \frac{x^2 + 5x + 6}{x + 2}

Factor the numerator:

F(x)=x2+5x+6=(x+2)(x+3)F(x) = x^2 + 5x + 6 = (x + 2)(x + 3)

Now, divide:

(F÷H)(x)=(x+2)(x+3)x+2(F \div H)(x) = \frac{(x + 2)(x + 3)}{x + 2}

Since x+2x + 2 cancels out, we have:

(F÷H)(x)=x+3(F \div H)(x) = x + 3

3. (F+H)(x)(F + H)(x)

To find (F+H)(x)(F + H)(x), add the functions F(x)F(x) and H(x)H(x):

(F+H)(x)=F(x)+H(x)=(x2+5x+6)+(x+2)(F + H)(x) = F(x) + H(x) = (x^2 + 5x + 6) + (x + 2)

Combine like terms:

(F+H)(x)=x2+6x+8(F + H)(x) = x^2 + 6x + 8

Summary of Results

  1. (FH)(x)=x3+7x2+16x+12(F \cdot H)(x) = x^3 + 7x^2 + 16x + 12
  2. (F÷H)(x)=x+3(F \div H)(x) = x + 3
  3. (F+H)(x)=x2+6x+8(F + H)(x) = x^2 + 6x + 8

Would you like any further details or have any questions? Here are five related questions to expand your understanding:

  1. What would be (FH)(x)(F - H)(x) given the same functions?
  2. How can the division (F÷H)(x)(F \div H)(x) change if H(x)H(x) were different?
  3. What is the derivative of (FH)(x)(F \cdot H)(x)?
  4. What would be the roots of (F+H)(x)(F + H)(x)?
  5. How does the degree of the polynomial change in (FH)(x)(F \cdot H)(x) compared to F(x)F(x) and H(x)H(x) individually?

Tip: When working with polynomial expressions, always consider factoring and simplifying to make your calculations easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Functions
Function Operations

Formulas

(F · H)(x) = F(x) · H(x)
(F ÷ H)(x) = F(x) ÷ H(x)
(F + H)(x) = F(x) + H(x)

Theorems

Polynomial Multiplication
Polynomial Division

Suitable Grade Level

Grades 9-12