Math Problem Statement

Diketahui F(x) = 2x^3 - 3x^2 + x - 6, g(x) = x^2 - 4x + 5, h(x) = x + 3. Tentukan: a. (F + g)(x), b. (g × h)(x)

Solution

Let's break down the given information and solve the problem step by step.

We have the following functions:

  1. F(x)=2x33x2+x6F(x) = 2x^3 - 3x^2 + x - 6
  2. g(x)=x24x+5g(x) = x^2 - 4x + 5
  3. h(x)=x+3h(x) = x + 3

The tasks are:

  1. To find (F+g)(x)(F + g)(x), which is the sum of F(x)F(x) and g(x)g(x).
  2. To find (g×h)(x)(g \times h)(x), which is the product of g(x)g(x) and h(x)h(x).

a. (F+g)(x)(F + g)(x)

We add the functions F(x)F(x) and g(x)g(x): (F+g)(x)=F(x)+g(x)(F + g)(x) = F(x) + g(x) Substituting the given functions: (F+g)(x)=(2x33x2+x6)+(x24x+5)(F + g)(x) = (2x^3 - 3x^2 + x - 6) + (x^2 - 4x + 5) Now combine like terms: (F+g)(x)=2x3+(3x2+x2)+(x4x)+(6+5)(F + g)(x) = 2x^3 + (-3x^2 + x^2) + (x - 4x) + (-6 + 5) (F+g)(x)=2x32x23x1(F + g)(x) = 2x^3 - 2x^2 - 3x - 1

b. (g×h)(x)(g \times h)(x)

We multiply the functions g(x)g(x) and h(x)h(x): (g×h)(x)=g(x)×h(x)(g \times h)(x) = g(x) \times h(x) Substituting the given functions: (g×h)(x)=(x24x+5)(x+3)(g \times h)(x) = (x^2 - 4x + 5)(x + 3) Now apply the distributive property (FOIL method): (g×h)(x)=x2(x+3)4x(x+3)+5(x+3)(g \times h)(x) = x^2(x + 3) - 4x(x + 3) + 5(x + 3) Multiply each term: (g×h)(x)=x3+3x24x212x+5x+15(g \times h)(x) = x^3 + 3x^2 - 4x^2 - 12x + 5x + 15 Combine like terms: (g×h)(x)=x3x27x+15(g \times h)(x) = x^3 - x^2 - 7x + 15

Final Results:

  1. (F+g)(x)=2x32x23x1(F + g)(x) = 2x^3 - 2x^2 - 3x - 1
  2. (g×h)(x)=x3x27x+15(g \times h)(x) = x^3 - x^2 - 7x + 15

Would you like a more detailed explanation for any part of the solution?

Here are some related questions to explore:

  1. How do you factor a cubic polynomial like x3x27x+15x^3 - x^2 - 7x + 15?
  2. Can you solve F(x)=0F(x) = 0 for the roots of the cubic equation?
  3. What is the domain and range of (F+g)(x)(F + g)(x)?
  4. Can you graph the functions F(x)F(x), g(x)g(x), and h(x)h(x) together?
  5. How does the product rule for derivatives apply to functions like g(x)×h(x)g(x) \times h(x)?

Tip: When adding or multiplying polynomials, always combine like terms carefully to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Functions
Function Addition
Function Multiplication

Formulas

(F + g)(x) = F(x) + g(x)
(g × h)(x) = g(x) × h(x)

Theorems

-

Suitable Grade Level

Grades 9-12