Math Problem Statement

A curve is given by the following parametric equations. X(T)=4t-4sin(t), y(T)=4-4cos(t). Find the (x,y) point, dx/dt, dy/dt, and the speed at T=pi/6

Solution

We are given the parametric equations:

x(t)=4t4sin(t)x(t) = 4t - 4\sin(t) y(t)=44cos(t)y(t) = 4 - 4\cos(t)

Step 1: Find the (x,y)(x, y) coordinates at t=π6t = \frac{\pi}{6}

Substitute t=π6t = \frac{\pi}{6} into x(t)x(t) and y(t)y(t):

x(π6)=4(π6)4sin(π6)x\left(\frac{\pi}{6}\right) = 4\left(\frac{\pi}{6}\right) - 4\sin\left(\frac{\pi}{6}\right) Since sin(π6)=12\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}:

x(π6)=2π34(12)=2π32x\left(\frac{\pi}{6}\right) = \frac{2\pi}{3} - 4\left(\frac{1}{2}\right) = \frac{2\pi}{3} - 2

y(π6)=44cos(π6)y\left(\frac{\pi}{6}\right) = 4 - 4\cos\left(\frac{\pi}{6}\right) Since cos(π6)=32\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}:

y(π6)=44(32)=423y\left(\frac{\pi}{6}\right) = 4 - 4\left(\frac{\sqrt{3}}{2}\right) = 4 - 2\sqrt{3}

So, the coordinates at t=π6t = \frac{\pi}{6} are:

(2π32,423)\left(\frac{2\pi}{3} - 2, 4 - 2\sqrt{3}\right)

Step 2: Find dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}

Differentiate x(t)x(t) and y(t)y(t) with respect to tt:

For x(t)=4t4sin(t)x(t) = 4t - 4\sin(t):

dxdt=44cos(t)\frac{dx}{dt} = 4 - 4\cos(t)

For y(t)=44cos(t)y(t) = 4 - 4\cos(t):

dydt=4sin(t)\frac{dy}{dt} = 4\sin(t)

Step 3: Evaluate dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} at t=π6t = \frac{\pi}{6}

Substitute t=π6t = \frac{\pi}{6}:

dxdtt=π6=44cos(π6)=44(32)=423\frac{dx}{dt}\Bigg|_{t = \frac{\pi}{6}} = 4 - 4\cos\left(\frac{\pi}{6}\right) = 4 - 4\left(\frac{\sqrt{3}}{2}\right) = 4 - 2\sqrt{3}

dydtt=π6=4sin(π6)=4(12)=2\frac{dy}{dt}\Bigg|_{t = \frac{\pi}{6}} = 4\sin\left(\frac{\pi}{6}\right) = 4\left(\frac{1}{2}\right) = 2

Step 4: Find the speed at t=π6t = \frac{\pi}{6}

The speed is given by:

Speed=(dxdt)2+(dydt)2\text{Speed} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}

Substitute the values:

Speed=(423)2+22\text{Speed} = \sqrt{(4 - 2\sqrt{3})^2 + 2^2}

First, simplify (423)2(4 - 2\sqrt{3})^2:

(423)2=16163+12=28163(4 - 2\sqrt{3})^2 = 16 - 16\sqrt{3} + 12 = 28 - 16\sqrt{3}

So, the speed becomes:

Speed=(28163)+4=32163\text{Speed} = \sqrt{(28 - 16\sqrt{3}) + 4} = \sqrt{32 - 16\sqrt{3}}

Summary of results at t=π6t = \frac{\pi}{6}:

  • The point (x,y)(x, y) is (2π32,423)\left(\frac{2\pi}{3} - 2, 4 - 2\sqrt{3}\right)
  • dxdt=423\frac{dx}{dt} = 4 - 2\sqrt{3}
  • dydt=2\frac{dy}{dt} = 2
  • Speed =32163= \sqrt{32 - 16\sqrt{3}}

Would you like further details on any step?

Here are 5 related questions to further explore:

  1. How do you interpret the physical meaning of the speed for parametric curves?
  2. What happens to the speed at different points tt?
  3. How would you find the acceleration of the curve at t=π6t = \frac{\pi}{6}?
  4. How does the curvature of the curve vary with tt?
  5. Can the speed ever be zero? If so, under what conditions?

Tip: Speed for a parametric curve is always the magnitude of the velocity vector, which combines both the xx- and yy-direction changes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Differentiation
Trigonometry

Formulas

x(t) = 4t - 4sin(t)
y(t) = 4 - 4cos(t)
dx/dt = 4 - 4cos(t)
dy/dt = 4sin(t)
Speed = sqrt((dx/dt)^2 + (dy/dt)^2)

Theorems

Pythagorean Theorem for speed
Trigonometric identities for sin and cos

Suitable Grade Level

Grades 11-12