Math Problem Statement

minimize x^2+y^2+z^2 subject to ax^2+by^2+cz^2+2fyz+2qzx+2hxy=1 using method of legrange multipliers

Solution

To minimize the function f(x,y,z)=x2+y2+z2f(x, y, z) = x^2 + y^2 + z^2 subject to the constraint g(x,y,z)=ax2+by2+cz2+2fyz+2qzx+2hxy=1g(x, y, z) = ax^2 + by^2 + cz^2 + 2fyz + 2qzx + 2hxy = 1, we can apply the method of Lagrange multipliers.

The method states that the gradients of the function to be minimized ( ff ) and the constraint function ( gg ) must be proportional at the points of extremum. This gives us the following equation:

f(x,y,z)=λg(x,y,z)\nabla f(x, y, z) = \lambda \nabla g(x, y, z)

Step 1: Compute the gradients

  • The gradient of f(x,y,z)=x2+y2+z2f(x, y, z) = x^2 + y^2 + z^2 is: f(x,y,z)=(2x,2y,2z)\nabla f(x, y, z) = (2x, 2y, 2z)

  • The gradient of the constraint function g(x,y,z)=ax2+by2+cz2+2fyz+2qzx+2hxyg(x, y, z) = ax^2 + by^2 + cz^2 + 2fyz + 2qzx + 2hxy is:

\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right)$$ The partial derivatives of $$g$$ are: - $$\frac{\partial g}{\partial x} = 2ax + 2qz + 2hy$$ - $$\frac{\partial g}{\partial y} = 2by + 2fz + 2hx$$ - $$\frac{\partial g}{\partial z} = 2cz + 2fy + 2qx$$ Thus, \[ \nabla g(x, y, z) = (2ax +

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Optimization
Multivariable Calculus
Lagrange Multipliers
Quadratic Forms

Formulas

∇f(x, y, z) = λ∇g(x, y, z)
f(x, y, z) = x^2 + y^2 + z^2
g(x, y, z) = ax^2 + by^2 + cz^2 + 2fyz + 2qzx + 2hxy

Theorems

Lagrange Multipliers
Gradient of Scalar Fields

Suitable Grade Level

Undergraduate - Advanced Calculus or Multivariable Calculus