Math Problem Statement
find the extreme values of x²+y²+z² subject to the conditions ax²+by²+cz²=1 and lx+my+nz= 0
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Multivariable Calculus
Lagrange Multipliers
Constrained Optimization
Quadratic Forms
Formulas
f(x, y, z) = x² + y² + z²
g(x, y, z) = ax² + by² + cz² = 1
h(x, y, z) = lx + my + nz = 0
Lagrange function: 𝓛(x, y, z, λ, μ) = x² + y² + z² + λ(ax² + by² + cz² - 1) + μ(lx + my + nz)
Theorems
Lagrange Multiplier Theorem
Quadratic Form Theorem
Suitable Grade Level
College/University Level
Related Recommendation
Optimization using Lagrange Multipliers: Minimize x^2 + y^2 + z^2 with Quadratic Constraints
Optimize z = x^2 + y^2 + z^2 with Constraints
Extreme Values of a Function with Lagrange Multipliers for Two Constraints
Maximize Function f(x, y, z) Using Lagrange Multipliers with Two Constraints
Maximize and Minimize xy^2z with Lagrange Multipliers under Constraint x^2 + y^2 + z^2 = 36