Math Problem Statement

Tarkastellaan normaalijakautunutta satunnaismuuttujaa X ~ N(100, 100). a) Laske todennäköisyys P(X ≤ 100). b) Mitä standardisoidun normaalijakauman arvoa a)-kohdan todennäköisyys vastaa, eli mille z on P(X ≤ 100) = P(Z ≤ z), missä Z ~ N(0, 1)? c) Määräa piste z, jolle P(Z ≤ z) = 17/20. Anna kaikki vastaukset kahden desimaalin tarkkuudella. Käytä desimaalierottimena pistettä.

Solution

The task involves a normally distributed random variable XN(100,100)X \sim N(100, 100), and we are solving three parts. Let’s break this problem down:


a) P(X100)\mathbb{P}(X \leq 100)

To calculate this probability:

  1. The random variable XX has a mean μ=100\mu = 100 and a variance σ2=100\sigma^2 = 100, so the standard deviation σ=100=10\sigma = \sqrt{100} = 10.
  2. Standardize XX to ZZ, where ZN(0,1)Z \sim N(0, 1): Z=XμσZ = \frac{X - \mu}{\sigma} For X=100X = 100: Z=10010010=0Z = \frac{100 - 100}{10} = 0
  3. From the standard normal table, P(Z0)=0.5\mathbb{P}(Z \leq 0) = 0.5.

Thus, P(X100)=0.50\mathbb{P}(X \leq 100) = 0.50.


b) Standardized normal distribution value for the above probability

The probability P(X100)=P(Zz)\mathbb{P}(X \leq 100) = \mathbb{P}(Z \leq z) corresponds to z=0z = 0, because we standardized XX in part (a).

So, z=0z = 0.


c) Find zz where P(Zz)=1720\mathbb{P}(Z \leq z) = \frac{17}{20}

To calculate this:

  1. P(Zz)=1720=0.85\mathbb{P}(Z \leq z) = \frac{17}{20} = 0.85.
  2. Using the standard normal table or inverse normal function, the zz-score corresponding to 0.850.85 is approximately: z=1.04z = 1.04

Final Answers:

  1. a) P(X100)=0.50\mathbb{P}(X \leq 100) = 0.50
  2. b) z=0z = 0
  3. c) z=1.04z = 1.04

Would you like a detailed explanation for any part?

Here are five related questions for deeper understanding:

  1. How do you calculate the standard score ZZ for any given XX?
  2. What does the standard normal distribution represent?
  3. Why does P(Xμ)\mathbb{P}(X \leq \mu) equal 0.5 in a symmetric normal distribution?
  4. How can you calculate probabilities without standard normal tables?
  5. What are common applications of normal distributions in real life?

Tip: Always verify whether probabilities correspond to areas under the curve when interpreting normal distributions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability
Normal Distribution
Standardization
Z-scores

Formulas

Standardization formula: Z = (X - μ) / σ
Probability calculation using standard normal distribution tables or inverse functions

Theorems

Properties of Normal Distribution
Symmetry of Standard Normal Distribution

Suitable Grade Level

Grades 10-12