Math Problem Statement

Find probabilities for the standard and non-standard normal distribution.

Solution

Let's break down and solve each part of this question related to probabilities for standard and non-standard normal distributions.

a. P(z>1.11)P(z > -1.11)

This is the probability that the standard normal variable zz is greater than 1.11-1.11.

To find this:

  1. First, look up the cumulative probability for z=1.11z = -1.11 in the standard normal distribution table, which gives P(Z<1.11)P(Z < -1.11).
  2. Use the fact that P(Z>1.11)=1P(Z<1.11)P(Z > -1.11) = 1 - P(Z < -1.11).

From the table, P(Z<1.11)0.1335P(Z < -1.11) \approx 0.1335.

Thus, P(Z>1.11)=10.1335=0.8665P(Z > -1.11) = 1 - 0.1335 = 0.8665.

b. P(z<0.43)P(z < 0.43)

This is the probability that the standard normal variable zz is less than 0.43.

  1. Look up the cumulative probability for z=0.43z = 0.43.

From the table, P(Z<0.43)0.6664P(Z < 0.43) \approx 0.6664.

Thus, P(Z<0.43)=0.6664P(Z < 0.43) = 0.6664.

c. P(1.35<z<1.23)P(-1.35 < z < 1.23)

This is the probability that the standard normal variable zz lies between 1.35-1.35 and 1.231.23.

  1. Look up the cumulative probabilities for z=1.35z = -1.35 and z=1.23z = 1.23.

    • P(Z<1.35)0.0885P(Z < -1.35) \approx 0.0885
    • P(Z<1.23)0.8907P(Z < 1.23) \approx 0.8907
  2. Subtract: P(1.35<z<1.23)=P(Z<1.23)P(Z<1.35)=0.89070.0885=0.8022P(-1.35 < z < 1.23) = P(Z < 1.23) - P(Z < -1.35) = 0.8907 - 0.0885 = 0.8022

d. P(38<x<83)P(38 < x < 83) where μ=60\mu = 60 and σ=12\sigma = 12

This requires converting the non-standard normal variable xx into the standard normal variable zz.

  1. First, convert x=38x = 38 and x=83x = 83 into their corresponding zz-scores:

    • For x=38x = 38, z=386012=22121.83z = \frac{38 - 60}{12} = \frac{-22}{12} \approx -1.83
    • For x=83x = 83, z=836012=23121.92z = \frac{83 - 60}{12} = \frac{23}{12} \approx 1.92
  2. Look up the cumulative probabilities:

    • P(Z<1.83)0.0336P(Z < -1.83) \approx 0.0336
    • P(Z<1.92)0.9726P(Z < 1.92) \approx 0.9726
  3. Subtract: P(38<x<83)=P(Z<1.92)P(Z<1.83)=0.97260.0336=0.9390P(38 < x < 83) = P(Z < 1.92) - P(Z < -1.83) = 0.9726 - 0.0336 = 0.9390

Final answers:

  • a. P(z>1.11)=0.8665P(z > -1.11) = 0.8665
  • b. P(z<0.43)=0.6664P(z < 0.43) = 0.6664
  • c. P(1.35<z<1.23)=0.8022P(-1.35 < z < 1.23) = 0.8022
  • d. P(38<x<83)=0.9390P(38 < x < 83) = 0.9390

Would you like further details or explanations on any part?


Here are five questions related to the content:

  1. How do you interpret a zz-score in terms of standard deviation?
  2. What is the relationship between the cumulative probability and the standard normal distribution curve?
  3. How can you use symmetry properties of the normal distribution to simplify probability calculations?
  4. Why is it necessary to convert non-standard normal variables to standard zz-scores?
  5. What is the significance of the total area under the standard normal curve?

Tip: Always remember that the area under the standard normal distribution curve represents probability and sums to 1!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Normal Distribution
Standard Normal Distribution

Formulas

Standard normal probability: P(Z > z) = 1 - P(Z < z)
Z-score formula: Z = (X - μ) / σ
Probability of a range in normal distribution: P(a < Z < b) = P(Z < b) - P(Z < a)

Theorems

Normal Distribution Theorem
Standard Normal Distribution Theorem

Suitable Grade Level

Grades 11-12