Math Problem Statement
Given z1 = 4cis(-π/3) and z2 = 3cis(5π/6), find expressions for z1z2, (z1/z2)^3, and (z1^z2)^7 in the form a + bi.
Solution
Let's go through each part of this problem systematically.
Given:
z1=4cis(−3π)andz2=3cis(65π)
where cis(θ)=cos(θ)+isin(θ).
Part (a): z1z2
To multiply two complex numbers in polar form:
z1z2=∣z1∣∣z2∣cis(θ1+θ2)
- Magnitudes: ∣z1∣=4 and ∣z2∣=3, so ∣z1z2∣=4×3=12.
- Angles: θ1=−3π and θ2=65π, so θ1+θ2=−3π+65π=2π.
Therefore,
z1z2=12cis(2π)
Converting 12cis(2π) to rectangular form:
z1z2=12(cos2π+isin2π)=12×(0+i×1)=12i
So, the answer is:
z1z2=0+12i
Part (b): (z2z1)3
To divide and then raise to a power:
- Division of magnitudes: z2z1=34.
- Division of angles: θ1−θ2=−3π−65π=−67π.
Thus,
z2z1=34cis(−67π)
Now, raising to the power of 3:
(z2z1)3=(34)3cis(3×−67π)
- Magnitude: (34)3=2764.
- Angle: 3×−67π=−621π=−27π. (Adding 2π repeatedly to make it between −π and π, we get 2π).
So,
(z2z1)3=2764cis(2π)
Converting to rectangular form:
(z2z1)3=2764(0+i⋅1)=2764i
So, the answer is:
(z2z1)3=0+2764i
Part (c): (z1z2)7
Would