Math Problem Statement

Given z1 = 4cis(-π/3) and z2 = 3cis(5π/6), find expressions for z1z2, (z1/z2)^3, and (z1^z2)^7 in the form a + bi.

Solution

Let's go through each part of this problem systematically.

Given: z1=4cis(π3)andz2=3cis(5π6)z_1 = 4 \operatorname{cis}\left(-\frac{\pi}{3}\right) \quad \text{and} \quad z_2 = 3 \operatorname{cis}\left(\frac{5\pi}{6}\right) where cis(θ)=cos(θ)+isin(θ)\operatorname{cis}(\theta) = \cos(\theta) + i \sin(\theta).

Part (a): z1z2z_1 z_2

To multiply two complex numbers in polar form: z1z2=z1z2cis(θ1+θ2)z_1 z_2 = |z_1| |z_2| \operatorname{cis}(\theta_1 + \theta_2)

  1. Magnitudes: z1=4|z_1| = 4 and z2=3|z_2| = 3, so z1z2=4×3=12|z_1 z_2| = 4 \times 3 = 12.
  2. Angles: θ1=π3\theta_1 = -\frac{\pi}{3} and θ2=5π6\theta_2 = \frac{5\pi}{6}, so θ1+θ2=π3+5π6=π2\theta_1 + \theta_2 = -\frac{\pi}{3} + \frac{5\pi}{6} = \frac{\pi}{2}.

Therefore, z1z2=12cis(π2)z_1 z_2 = 12 \operatorname{cis}\left(\frac{\pi}{2}\right) Converting 12cis(π2)12 \operatorname{cis}\left(\frac{\pi}{2}\right) to rectangular form: z1z2=12(cosπ2+isinπ2)=12×(0+i×1)=12iz_1 z_2 = 12 \left(\cos\frac{\pi}{2} + i \sin\frac{\pi}{2}\right) = 12 \times (0 + i \times 1) = 12i So, the answer is: z1z2=0+12iz_1 z_2 = 0 + 12i

Part (b): (z1z2)3\left( \frac{z_1}{z_2} \right)^3

To divide and then raise to a power:

  1. Division of magnitudes: z1z2=43\left| \frac{z_1}{z_2} \right| = \frac{4}{3}.
  2. Division of angles: θ1θ2=π35π6=7π6\theta_1 - \theta_2 = -\frac{\pi}{3} - \frac{5\pi}{6} = -\frac{7\pi}{6}.

Thus, z1z2=43cis(7π6)\frac{z_1}{z_2} = \frac{4}{3} \operatorname{cis}\left(-\frac{7\pi}{6}\right)

Now, raising to the power of 3: (z1z2)3=(43)3cis(3×7π6)\left( \frac{z_1}{z_2} \right)^3 = \left(\frac{4}{3}\right)^3 \operatorname{cis}\left(3 \times -\frac{7\pi}{6}\right)

  1. Magnitude: (43)3=6427\left(\frac{4}{3}\right)^3 = \frac{64}{27}.
  2. Angle: 3×7π6=21π6=7π23 \times -\frac{7\pi}{6} = -\frac{21\pi}{6} = -\frac{7\pi}{2}. (Adding 2π2\pi repeatedly to make it between π-\pi and π\pi, we get π2\frac{\pi}{2}).

So, (z1z2)3=6427cis(π2)\left( \frac{z_1}{z_2} \right)^3 = \frac{64}{27} \operatorname{cis}\left(\frac{\pi}{2}\right) Converting to rectangular form: (z1z2)3=6427(0+i1)=64i27\left( \frac{z_1}{z_2} \right)^3 = \frac{64}{27} \left(0 + i \cdot 1\right) = \frac{64i}{27} So, the answer is: (z1z2)3=0+64i27\left( \frac{z_1}{z_2} \right)^3 = 0 + \frac{64i}{27}

Part (c): (z1z2)7\left( z_1^{z_2} \right)^7

Would

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Multiplication and Division of Complex Numbers
Exponentiation of Complex Numbers

Formulas

z1z2 = |z1||z2| cis(θ1 + θ2)
(z1/z2)^n = (|z1|/|z2|)^n cis(n(θ1 - θ2))

Theorems

De Moivre's Theorem

Suitable Grade Level

Grades 11-12