Math Problem Statement

Which one of the following options gives the product \( \sqrt{2} [\cos(\frac{\pi}{6}) - i\sin(\frac{\pi}{6})] \times \sqrt{3} [\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})] \)? Write the answer in polar form.

Solution

Let’s solve the problem step by step.

The given expression is:

[ \sqrt{2} \left[ \cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{\pi}{6}\right) \right] \cdot \sqrt{3} \left[ \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right) \right] ]

Step 1: Express the factors in polar form

The polar form of a complex number is: r[cos(θ)+isin(θ)]r \left[\cos(\theta) + i\sin(\theta)\right]

First term:

2[cos(π6)isin(π6)]\sqrt{2} \left[\cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{\pi}{6}\right)\right] This is equivalent to: 2cis(π6)\sqrt{2} \text{cis}\left(-\frac{\pi}{6}\right) where cis(θ)=cos(θ)+isin(θ)\text{cis}(\theta) = \cos(\theta) + i\sin(\theta).

Second term:

3[cos(3π4)+isin(3π4)]\sqrt{3} \left[\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right] This is equivalent to: 3cis(3π4)\sqrt{3} \text{cis}\left(\frac{3\pi}{4}\right)

Step 2: Multiply the polar forms

When multiplying two complex numbers in polar form: r1cis(θ1)r2cis(θ2)=(r1r2)cis(θ1+θ2)r_1 \text{cis}(\theta_1) \cdot r_2 \text{cis}(\theta_2) = (r_1 r_2) \text{cis}(\theta_1 + \theta_2)

Here:

  • r1=2r_1 = \sqrt{2}, θ1=π6\theta_1 = -\frac{\pi}{6}
  • r2=3r_2 = \sqrt{3}, θ2=3π4\theta_2 = \frac{3\pi}{4}

So: r1r2=23=6r_1 r_2 = \sqrt{2} \cdot \sqrt{3} = \sqrt{6} θ1+θ2=π6+3π4=2π12+9π12=7π12\theta_1 + \theta_2 = -\frac{\pi}{6} + \frac{3\pi}{4} = \frac{-2\pi}{12} + \frac{9\pi}{12} = \frac{7\pi}{12}

Thus, the product is: 6cis(7π12)\sqrt{6} \text{cis}\left(\frac{7\pi}{12}\right)

Step 3: Write the result in expanded polar form

6cis(7π12)=6[cos(7π12)+isin(7π12)]\sqrt{6} \text{cis}\left(\frac{7\pi}{12}\right) = \sqrt{6} \left[\cos\left(\frac{7\pi}{12}\right) + i\sin\left(\frac{7\pi}{12}\right)\right]

Final Answer:

The correct option is: B: 6[cos(7π12)+isin(7π12)]\text{B: } \sqrt{6} \left[\cos\left(\frac{7\pi}{12}\right) + i\sin\left(\frac{7\pi}{12}\right)\right]


Would you like further clarifications? Here are 5 related questions:

  1. How do you multiply complex numbers in rectangular form instead of polar form?
  2. What is the geometric interpretation of multiplying two complex numbers in polar form?
  3. How do you convert between polar and rectangular forms of complex numbers?
  4. Why does the magnitude multiply and the angle add in polar form multiplication?
  5. How do you simplify π6+3π4-\frac{\pi}{6} + \frac{3\pi}{4} in terms of radians?

Tip: Always simplify angles to a common denominator when adding or subtracting them in radians!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Multiplication of Complex Numbers
Trigonometry

Formulas

Polar form of a complex number: \( r [\cos(\theta) + i\sin(\theta)] \)
Multiplication of complex numbers in polar form: \( r_1 [\cos(\theta_1) + i\sin(\theta_1)] \cdot r_2 [\cos(\theta_2) + i\sin(\theta_2)] = (r_1 r_2) [\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)] \)

Theorems

Angle Addition Formula
Polar Form Multiplication Rule

Suitable Grade Level

Grades 11-12