Math Problem Statement

Work for only Question 2.

Find AB and BA for Question 2, if possible.

Solution

To solve question 2, we need to find ABAB and BABA if possible. Let’s start with the matrices given in the image for question 2:

Matrix AA: A=[2973]A = \begin{bmatrix} 2 & 9 \\ -7 & 3 \end{bmatrix}

Matrix BB: B=[6403]B = \begin{bmatrix} 6 & -4 \\ 0 & 3 \end{bmatrix}

Step 1: Find ABAB

To find ABAB, we multiply each element of the rows in AA by the corresponding elements of the columns in BB:

AB=[2973][6403]AB = \begin{bmatrix} 2 & 9 \\ -7 & 3 \end{bmatrix} \cdot \begin{bmatrix} 6 & -4 \\ 0 & 3 \end{bmatrix}

Calculations for ABAB:

  • The element in the first row, first column: (26)+(90)=12+0=12(2 \cdot 6) + (9 \cdot 0) = 12 + 0 = 12

  • The element in the first row, second column: (24)+(93)=8+27=19(2 \cdot -4) + (9 \cdot 3) = -8 + 27 = 19

  • The element in the second row, first column: (76)+(30)=42+0=42(-7 \cdot 6) + (3 \cdot 0) = -42 + 0 = -42

  • The element in the second row, second column: (74)+(33)=28+9=37(-7 \cdot -4) + (3 \cdot 3) = 28 + 9 = 37

So, we get: AB=[12194237]AB = \begin{bmatrix} 12 & 19 \\ -42 & 37 \end{bmatrix}

Step 2: Find BABA

Now we’ll find BABA, which requires multiplying BB by AA:

BA=[6403][2973]BA = \begin{bmatrix} 6 & -4 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 9 \\ -7 & 3 \end{bmatrix}

Calculations for BABA:

  • The element in the first row, first column: (62)+(47)=12+28=40(6 \cdot 2) + (-4 \cdot -7) = 12 + 28 = 40

  • The element in the first row, second column: (69)+(43)=5412=42(6 \cdot 9) + (-4 \cdot 3) = 54 - 12 = 42

  • The element in the second row, first column: (02)+(37)=021=21(0 \cdot 2) + (3 \cdot -7) = 0 - 21 = -21

  • The element in the second row, second column: (09)+(33)=0+9=9(0 \cdot 9) + (3 \cdot 3) = 0 + 9 = 9

So, we get: BA=[4042219]BA = \begin{bmatrix} 40 & 42 \\ -21 & 9 \end{bmatrix}

Summary of Results

  • AB=[12194237]AB = \begin{bmatrix} 12 & 19 \\ -42 & 37 \end{bmatrix}
  • BA=[4042219]BA = \begin{bmatrix} 40 & 42 \\ -21 & 9 \end{bmatrix}

Would you like further details or explanations?

Here are some additional questions you might find helpful:

  1. What are the properties of matrix multiplication that affect the result of ABAB and BABA?
  2. How do we determine whether two matrices can be multiplied?
  3. Is matrix multiplication commutative, and what implications does this have on ABAB and BABA?
  4. How would the result change if one of the matrices was a different size?
  5. Can we generalize a rule for determining if AB=BAAB = BA for any matrices AA and BB?

Tip: Matrix multiplication requires that the number of columns in the first matrix matches the number of rows in the second matrix.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication

Formulas

Matrix multiplication formula: AB = A * B

Theorems

Matrix multiplication properties

Suitable Grade Level

Grades 10-12