Math Problem Statement

Matritsalar ko'paytmasi AB va BA ni toping(agar ular mavjud bo'lsa)

Matritsalar ko'paytmasi AB va BA ni toping (agar ular mavjud bo'lsa)

Solution

To find the products ABAB and BABA, let's proceed with matrix multiplication if the dimensions allow it.

Given matrices:

A=(2543),B=(2521)A = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 5 \\ -2 & 1 \end{pmatrix}

Dimensions

Matrix AA is a 2×22 \times 2 matrix, and matrix BB is also a 2×22 \times 2 matrix. Since both are 2×22 \times 2, both products ABAB and BABA are defined.

Calculating ABAB

AB=(2543)(2521)AB = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ -2 & 1 \end{pmatrix}

Calculating each element of ABAB:

  1. (AB)11=22+5(2)=410=6(AB)_{11} = 2 \cdot 2 + 5 \cdot (-2) = 4 - 10 = -6
  2. (AB)12=25+51=10+5=15(AB)_{12} = 2 \cdot 5 + 5 \cdot 1 = 10 + 5 = 15
  3. (AB)21=42+3(2)=86=2(AB)_{21} = 4 \cdot 2 + 3 \cdot (-2) = 8 - 6 = 2
  4. (AB)22=45+31=20+3=23(AB)_{22} = 4 \cdot 5 + 3 \cdot 1 = 20 + 3 = 23

So,

AB=(615223)AB = \begin{pmatrix} -6 & 15 \\ 2 & 23 \end{pmatrix}

Calculating BABA

BA=(2521)(2543)BA = \begin{pmatrix} 2 & 5 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix}

Calculating each element of BABA:

  1. (BA)11=22+54=4+20=24(BA)_{11} = 2 \cdot 2 + 5 \cdot 4 = 4 + 20 = 24
  2. (BA)12=25+53=10+15=25(BA)_{12} = 2 \cdot 5 + 5 \cdot 3 = 10 + 15 = 25
  3. (BA)21=22+14=4+4=0(BA)_{21} = -2 \cdot 2 + 1 \cdot 4 = -4 + 4 = 0
  4. (BA)22=25+13=10+3=7(BA)_{22} = -2 \cdot 5 + 1 \cdot 3 = -10 + 3 = -7

Thus,

BA=(242507)BA = \begin{pmatrix} 24 & 25 \\ 0 & -7 \end{pmatrix}

Final Results

AB=(615223),BA=(242507)AB = \begin{pmatrix} -6 & 15 \\ 2 & 23 \end{pmatrix}, \quad BA = \begin{pmatrix} 24 & 25 \\ 0 & -7 \end{pmatrix}

Would you like further details on any step, or do you have additional questions?

Further Questions

  1. What are the properties of matrix multiplication that allow for these calculations?
  2. How does the order of multiplication affect the product in matrix multiplication?
  3. What are some applications of matrix multiplication in real-world problems?
  4. Why are the results ABAB and BABA different in this case?
  5. Can matrix multiplication be used to solve systems of linear equations?

Tip

Remember, matrix multiplication is not commutative: ABBAAB \neq BA in most cases.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Linear Algebra

Formulas

Matrix product formula: (AB)_{ij} = \sum_{k} A_{ik} B_{kj}

Theorems

Properties of Matrix Multiplication
Non-commutativity of Matrix Multiplication

Suitable Grade Level

Grades 10-12