Math Problem Statement

Calculate AC, BC and (A + B)C. Also verify that (A + B)C = AC + BC for matrices A, B, and C, where A = [[0, 6, 7], [-6, 0, 8]], B = [[1, 0, 1], [1, 2, 0]], C = [[0, 1], [1, 2], [0, -2]].

Solution

You've uploaded an image with several mathematical questions. Let's tackle each one systematically:

Question 3: Calculate ACAC, BCBC, and (A+B)C(A + B)C. Also verify that (A+B)C=AC+BC(A + B)C = AC + BC for matrices AA, BB, and CC.

Given matrices: A=(067608)A = \begin{pmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \end{pmatrix} B=(101120)B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix} C=(011202)C = \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 0 & -2 \end{pmatrix}

Let's calculate ACAC, BCBC, and (A+B)C(A + B)C, and then verify the equation (A+B)C=AC+BC(A + B)C = AC + BC.

Step 1: Calculating ACAC

AC=AC=(067608)(011202)AC = A \cdot C = \begin{pmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 0 & -2 \end{pmatrix}

Step 2: Calculating BCBC

BC=BC=(101120)(011202)BC = B \cdot C = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 0 & -2 \end{pmatrix}

Step 3: Calculating (A+B)C(A + B)C

A+B=(067608)+(101120)=(168528)A + B = \begin{pmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 6 & 8 \\ -5 & 2 & 8 \end{pmatrix}

(A+B)C=(168528)(011202)(A + B)C = \begin{pmatrix} 1 & 6 & 8 \\ -5 & 2 & 8 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 0 & -2 \end{pmatrix}

Step 4: Verify (A+B)C=AC+BC(A + B)C = AC + BC

Let's perform these calculations using Python.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Matrix Addition

Formulas

Matrix multiplication formula
Matrix addition

Theorems

-

Suitable Grade Level

Grades 11-12, Undergraduate