Math Problem Statement
Solution
Let’s solve this step-by-step. First, we will calculate the matrix products and sums , , , , , and . Then, we'll verify the given properties:
Given Matrices:
B = \begin{bmatrix} 4 & 2 & 0 \\ 1 & -5 & -2 \\ 0 & 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} -3 & 2 & -1 \\ 5 & 2 & 8 \\ 2 & 3 & -4 \end{bmatrix}.$$ I'll first compute each expression systematically. Hold on while I calculate these values. numpy as np # Define matrices A, B, C A = np.array([[2, 3, 5], [1, 0, -1], [-2, 1, 4]]) B = np.array([[4, 2, 0], [1, -5, -2], [0, 2, 3]]) C = np.array([[-3, 2, -1], [5, 2, 8], [2, 3, -4]]) # Compute required operations AB = np.dot(A, B) # AB BA = np.dot(B, A) # BA AC = np.dot(A, C) # AC BC = np.dot(B, C) # BC A_plus_B = A + B # A + B B_plus_C = B + C # B + C # Verifying distributive properties AB_C = np.dot(AB, C) # (AB)C A_BC = np.dot(A, np.dot(B, C)) # A(BC) A_plus_B_C = np.dot(A + B, C) # (A + B)C AC_plus_BC = AC + BC # AC + BC A_B_plus_C = np.dot(A, B + C) # A(B + C) AB_plus_AC = AB + AC # AB + AC AB, BA, AC, BC, A_plus_B, B_plus_C, AB_C, A_BC, A_plus_B_C, AC_plus_BC, A_B_plus_C, AB_plus_ACHere are the computed results: 1. **Matrix Products and Sums:** - $$AB = \begin{bmatrix} 11 & -1 & 9 \\ 4 & 0 & -3 \\ -7 & -1 & 10 \end{bmatrix}$$ - $$BA = \begin{bmatrix} 10 & 12 & 18 \\ 1 & 1 & 2 \\ -4 & 3 & 10 \end{bmatrix}$$ - $$AC = \begin{bmatrix} 19 & 25 & 2 \\ -5 & -1 & 3 \\ 19 & 10 & -6 \end{bmatrix}$$ - $$BC = \begin{bmatrix} -2 & 12 & 12 \\ -32 & -14 & -33 \\ 16 & 13 & 4 \end{bmatrix}$$ - $$A + B = \begin{bmatrix} 6 & 5 & 5 \\ 2 & -5 & -3 \\ -2 & 3 & 7 \end{bmatrix}$$ - $$B + C = \begin{bmatrix} 1 & 4 & -1 \\ 6 & -3 & 6 \\ 2 & 5 & -1 \end{bmatrix}$$ 2. **Verification of Properties:** - $$(AB)C = A(BC) = \begin{bmatrix} -20 & 47 & -55 \\ -18 & -1 & 8 \\ 36 & 14 & -41 \end{bmatrix}$$ $$(AB)C = A(BC)$$ is verified. - $$(A+B)C = AC + BC = \begin{bmatrix} 17 & 37 & 14 \\ -37 & -15 & -30 \\ 35 & 23 & -2 \end{bmatrix}$$ $$(A+B)C = AC + BC$$ is verified. - $$A(B+C) = AB + AC = \begin{bmatrix} 30 & 24 & 11 \\ -1 & -1 & 0 \\ 12 & 9 & 4 \end{bmatrix}$$ $$A(B+C) = AB + AC$$ is verified. Would you like further clarification or a deeper breakdown of any step? ### Questions to Explore: 1. What are the basic properties of matrix multiplication that allow such verifications? 2. Why is $$AB \neq BA$$ in general for matrices? 3. How do dimensions affect the possibility of computing sums and products of matrices? 4. Can the distributive property be used for other algebraic objects besides matrices? 5. What is the importance of verifying such properties in applications of linear algebra? ### Tip: Always verify matrix dimensions before attempting multiplication, as the number of columns in the first matrix must equal the number of rows in the second.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Multiplication
Matrix Addition
Distributive Properties in Matrices
Formulas
Matrix multiplication formula: (AB)ij = sum(Aik * Bkj for k)
Matrix addition: (A + B)ij = Aij + Bij
Theorems
Associative Property of Matrix Multiplication
Distributive Property of Matrices
Suitable Grade Level
Undergraduate (Linear Algebra)
Related Recommendation
Matrix Multiplication: Evaluating A(B + C) with Given Matrices
Matrix Operations for A, B, and C: Calculating 2A - C and A + BC
Matrix Operations: 2(A - B) + 4(C - A) + 2(A - C) - 2C + 3B
Detailed Matrix Operations: Addition, Scalar Multiplication, and Multiplication
Matrix Calculation for 2A + B + 3C with Given Matrices A, B, and C