Math Problem Statement

If A=[8511−4]A=[8115−4]  and  B=[−4562]B=[−4652]  then |4A−3B−5I|=?

Solution

We are tasked to compute 4A3B5I|4A - 3B - 5I|, where AA, BB, and II are given matrices. Here's the step-by-step solution:

Step 1: Write Down the Matrices

Matrix AA is:

\begin{bmatrix} 8 & 5 \\ 1 & -4 \end{bmatrix}$$ Matrix $$B$$ is: $$B = \begin{bmatrix} -4 & 5 \\ 6 & 2 \end{bmatrix}$$ Matrix $$I$$ is the $$2 \times 2$$ identity matrix: $$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ ### Step 2: Compute $$4A$$ Multiply each entry of $$A$$ by 4: $$4A = 4 \cdot \begin{bmatrix} 8 & 5 \\ 1 & -4 \end{bmatrix} = \begin{bmatrix} 32 & 20 \\ 4 & -16 \end{bmatrix}$$ ### Step 3: Compute $$3B$$ Multiply each entry of $$B$$ by 3: $$3B = 3 \cdot \begin{bmatrix} -4 & 5 \\ 6 & 2 \end{bmatrix} = \begin{bmatrix} -12 & 15 \\ 18 & 6 \end{bmatrix}$$ ### Step 4: Compute $$5I$$ Multiply each entry of $$I$$ by 5: $$5I = 5 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$ ### Step 5: Compute $$4A - 3B - 5I$$ Perform matrix subtraction: $$4A - 3B - 5I = \begin{bmatrix} 32 & 20 \\ 4 & -16 \end{bmatrix} - \begin{bmatrix} -12 & 15 \\ 18 & 6 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$ Step-by-step: 1. First compute $$4A - 3B$$: $$4A - 3B = \begin{bmatrix} 32 - (-12) & 20 - 15 \\ 4 - 18 & -16 - 6 \end{bmatrix} = \begin{bmatrix} 44 & 5 \\ -14 & -22 \end{bmatrix}$$ 2. Now subtract $$5I$$: $$4A - 3B - 5I = \begin{bmatrix} 44 - 5 & 5 - 0 \\ -14 - 0 & -22 - 5 \end{bmatrix} = \begin{bmatrix} 39 & 5 \\ -14 & -27 \end{bmatrix}$$ ### Step 6: Compute the Determinant of $$4A - 3B - 5I$$ The determinant of a $$2 \times 2$$ matrix $$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ is: $$|M| = ad - bc$$ For the matrix: $$\begin{bmatrix} 39 & 5 \\ -14 & -27 \end{bmatrix}$$ The determinant is: $$|4A - 3B - 5I| = (39)(-27) - (5)(-14) = -1053 + 70 = -983$$ ### Final Answer: $$|4A - 3B - 5I| = -983$$ --- Do you have any questions or need more explanation? ### Related Questions: 1. How do you compute the determinant of larger matrices (e.g., $$3 \times 3$$)? 2. What are the properties of the identity matrix and their significance in matrix operations? 3. Can determinants be negative, and what does it mean if they are? 4. How does matrix scalar multiplication affect its determinant? 5. How can the determinant help in solving systems of linear equations? ### Tip: Always simplify matrix operations step-by-step to avoid errors, especially in subtraction and determinant calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Determinants
Matrix Multiplication
Matrix Subtraction
Identity Matrix

Formulas

Determinant of a 2x2 matrix: |M| = ad - bc for M = [[a, b], [c, d]]
Matrix scalar multiplication: k * A = [[k*a11, k*a12], [k*a21, k*a22]]

Theorems

Properties of Determinants
Properties of the Identity Matrix in Matrix Operations

Suitable Grade Level

Grades 10-12