Math Problem Statement
Given the following matrices, determine 4A - 3B if possible. If not, state 'Not Possible'. A = [[5, 8, -7], [0, 0, -9]] and B = [[-8, 8, -8], [-5, 9, 0]]
Solution
The problem asks you to determine the result of the matrix operation , or state "Not Possible" if the operation cannot be performed. Let's go through it step by step.
Given Matrices:
\begin{bmatrix} 5 & 8 & -7 \\ 0 & 0 & -9 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -8 & 8 & -8 \\ -5 & 9 & 0 \end{bmatrix}$$ --- ### Step 1: Verify Matrix Dimensions - $$A$$ is a $$2 \times 3$$ matrix. - $$B$$ is also a $$2 \times 3$$ matrix. Since both matrices have the same dimensions, we can proceed with the matrix subtraction. --- ### Step 2: Perform the Scalar Multiplications #### Multiply $$A$$ by 4: $$4A = 4 \cdot \begin{bmatrix} 5 & 8 & -7 \\ 0 & 0 & -9 \end{bmatrix} = \begin{bmatrix} 20 & 32 & -28 \\ 0 & 0 & -36 \end{bmatrix}$$ #### Multiply $$B$$ by 3: $$3B = 3 \cdot \begin{bmatrix} -8 & 8 & -8 \\ -5 & 9 & 0 \end{bmatrix} = \begin{bmatrix} -24 & 24 & -24 \\ -15 & 27 & 0 \end{bmatrix}$$ --- ### Step 3: Subtract $$3B$$ from $$4A$$ $$4A - 3B = \begin{bmatrix} 20 & 32 & -28 \\ 0 & 0 & -36 \end{bmatrix} - \begin{bmatrix} -24 & 24 & -24 \\ -15 & 27 & 0 \end{bmatrix}$$ Now, subtract the corresponding elements: $$4A - 3B = \begin{bmatrix} 20 - (-24) & 32 - 24 & -28 - (-24) \\ 0 - (-15) & 0 - 27 & -36 - 0 \end{bmatrix}$$ $$4A - 3B = \begin{bmatrix} 44 & 8 & -4 \\ 15 & -27 & -36 \end{bmatrix}$$ --- ### Final Answer: $$4A - 3B = \begin{bmatrix} 44 & 8 & -4 \\ 15 & -27 & -36 \end{bmatrix}$$ --- Let me know if you need further clarification or additional steps! --- ### Relative Questions: 1. How do you determine if two matrices can be added or subtracted? 2. What are the rules for scalar multiplication of matrices? 3. How can matrix operations be applied in real-world problems? 4. What happens if the matrices have different dimensions? 5. Can you explain how element-wise operations work in matrices? --- ### Tip: When performing matrix operations, always ensure the matrices have compatible dimensions to avoid mistakes.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Algebra
Matrix Subtraction
Scalar Multiplication
Formulas
Matrix scalar multiplication: k * A
Matrix subtraction: A - B
Theorems
-
Suitable Grade Level
High School (Grades 10-12)