Math Problem Statement

If 3 2 5 4 A é ù-ê ú = ê ú ë û , 1 4 6 7 B é ù ê ú = ê ú-ë û . Find, A – 4B+7I2

Solution

We are given two matrices AA and BB, and we need to find the expression A4B+7I2A - 4B + 7I_2, where I2I_2 is the 2×22 \times 2 identity matrix.

Step 1: Define the given matrices

A=(3254),B=(1467)A = \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 \\ -6 & 7 \end{pmatrix} The identity matrix I2I_2 is: I2=(1001)I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Step 2: Calculate 4B4B

Multiply matrix BB by 4:

4B=4(1467)=(4162428)4B = 4 \cdot \begin{pmatrix} 1 & 4 \\ -6 & 7 \end{pmatrix} = \begin{pmatrix} 4 & 16 \\ -24 & 28 \end{pmatrix}

Step 3: Calculate 7I27I_2

Multiply the identity matrix I2I_2 by 7:

7I2=7(1001)=(7007)7I_2 = 7 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}

Step 4: Compute A4B+7I2A - 4B + 7I_2

Now, subtract 4B4B from AA, and then add 7I27I_2:

A4B=(3254)(4162428)=(342165(24)428)=(1142924)A - 4B = \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix} - \begin{pmatrix} 4 & 16 \\ -24 & 28 \end{pmatrix} = \begin{pmatrix} 3 - 4 & 2 - 16 \\ 5 - (-24) & 4 - 28 \end{pmatrix} = \begin{pmatrix} -1 & -14 \\ 29 & -24 \end{pmatrix}

Now, add 7I27I_2 to the result:

A4B+7I2=(1142924)+(7007)=(1+714+029+024+7)=(6142917)A - 4B + 7I_2 = \begin{pmatrix} -1 & -14 \\ 29 & -24 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} -1 + 7 & -14 + 0 \\ 29 + 0 & -24 + 7 \end{pmatrix} = \begin{pmatrix} 6 & -14 \\ 29 & -17 \end{pmatrix}

Final Answer:

A4B+7I2=(6142917)A - 4B + 7I_2 = \begin{pmatrix} 6 & -14 \\ 29 & -17 \end{pmatrix}

Would you like further details or have any questions?

Here are 5 questions to expand this topic:

  1. How do you compute the product of two matrices?
  2. What are the properties of the identity matrix?
  3. How do you determine if two matrices are equal?
  4. Can the determinant of a matrix help in solving systems of equations?
  5. What is the significance of matrix transformations in geometry?

Tip: Remember that the identity matrix acts like 1 in matrix operations—multiplying any matrix by the identity matrix leaves the original matrix unchanged.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Identity Matrix
Matrix Subtraction
Scalar Multiplication

Formulas

Matrix Subtraction: A - B
Scalar Multiplication: c * A
Identity Matrix: I_n

Theorems

Matrix Addition and Subtraction
Properties of the Identity Matrix
Distributive Property in Matrices

Suitable Grade Level

Grades 10-12