Math Problem Statement

If A = [[3, -2], [5, 4]], B = [[1, 4], [6, -7]], find A - 4B + 7I_2.

Solution

We are given the following matrices:

A=(3254),B=(1467)A = \begin{pmatrix} 3 & -2 \\ 5 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 \\ 6 & -7 \end{pmatrix} We need to calculate A4B+7I2A - 4B + 7I_2, where I2I_2 is the 2x2 identity matrix:

I2=(1001)I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Step 1: Compute 4B4B

Multiply each element of matrix BB by 4:

4B=4×(1467)=(4162428)4B = 4 \times \begin{pmatrix} 1 & 4 \\ 6 & -7 \end{pmatrix} = \begin{pmatrix} 4 & 16 \\ 24 & -28 \end{pmatrix}

Step 2: Compute 7I27I_2

Multiply each element of the identity matrix I2I_2 by 7:

7I2=7×(1001)=(7007)7I_2 = 7 \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}

Step 3: Compute A4BA - 4B

Now subtract 4B4B from AA:

A4B=(3254)(4162428)=(342165244(28))A - 4B = \begin{pmatrix} 3 & -2 \\ 5 & 4 \end{pmatrix} - \begin{pmatrix} 4 & 16 \\ 24 & -28 \end{pmatrix} = \begin{pmatrix} 3-4 & -2-16 \\ 5-24 & 4-(-28) \end{pmatrix}

A4B=(1181932)A - 4B = \begin{pmatrix} -1 & -18 \\ -19 & 32 \end{pmatrix}

Step 4: Add 7I27I_2 to the result

Now add 7I27I_2 to the result from Step 3:

A4B+7I2=(1181932)+(7007)=(1+718+019+032+7)A - 4B + 7I_2 = \begin{pmatrix} -1 & -18 \\ -19 & 32 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} -1+7 & -18+0 \\ -19+0 & 32+7 \end{pmatrix}

A4B+7I2=(6181939)A - 4B + 7I_2 = \begin{pmatrix} 6 & -18 \\ -19 & 39 \end{pmatrix}

Thus, the result of A4B+7I2A - 4B + 7I_2 is:

(6181939)\begin{pmatrix} 6 & -18 \\ -19 & 39 \end{pmatrix}

Let me know if you need further details or have any questions!

Here are five related questions to expand on this topic:

  1. What happens if you change the value of the scalar multiplying matrix BB?
  2. How would this change if we worked with 3x3 matrices instead of 2x2?
  3. How is the identity matrix used in matrix algebra beyond this example?
  4. What is the significance of scalar multiplication in matrix operations?
  5. Can you generalize this process for any matrix AA, matrix BB, and scalar kk?

Tip: When adding or subtracting matrices, always ensure they have the same dimensions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Matrix Addition
Scalar Multiplication
Identity Matrix

Formulas

Matrix subtraction: A - B = (a_ij - b_ij)
Scalar multiplication: kB = k * b_ij for each element
Identity matrix: I_2 = [[1, 0], [0, 1]]

Theorems

Properties of Matrices
Matrix Addition and Subtraction

Suitable Grade Level

Undergraduate