Math Problem Statement

Calculate 2A - B for the given matrices: A = [[2, 4], [3, 9]], B = [[-3, -9], [-2, -4]]

Solution

We are tasked with calculating 2AB2A - B for the given matrices:

A=(2439),B=(3924).A = \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & -9 \\ -2 & -4 \end{pmatrix}.

Step 1: Calculate 2A2A

2A=2(2439)=(48618).2A = 2 \cdot \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 6 & 18 \end{pmatrix}.

Step 2: Subtract BB from 2A2A

2AB=(48618)(3924).2A - B = \begin{pmatrix} 4 & 8 \\ 6 & 18 \end{pmatrix} - \begin{pmatrix} -3 & -9 \\ -2 & -4 \end{pmatrix}.

Perform the subtraction element-wise: 2AB=(4(3)8(9)6(2)18(4))=(4+38+96+218+4).2A - B = \begin{pmatrix} 4 - (-3) & 8 - (-9) \\ 6 - (-2) & 18 - (-4) \end{pmatrix} = \begin{pmatrix} 4 + 3 & 8 + 9 \\ 6 + 2 & 18 + 4 \end{pmatrix}.

2AB=(717822).2A - B = \begin{pmatrix} 7 & 17 \\ 8 & 22 \end{pmatrix}.

Final Answer:

(717822).\boxed{\begin{pmatrix} 7 & 17 \\ 8 & 22 \end{pmatrix}}.

Let me know if you'd like more detailed explanations or clarifications!


Here are 5 related questions to explore:

  1. What is the determinant of the matrix 2AB2A - B?
  2. How do you calculate the transpose of 2AB2A - B?
  3. Can 2AB2A - B be diagonalized? If yes, how?
  4. What are the eigenvalues of 2AB2A - B?
  5. How is matrix addition and subtraction applied in practical contexts?

Tip: Always verify matrix dimensions before performing operations to ensure they are compatible!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Matrix Addition
Scalar Multiplication
Matrix Subtraction

Formulas

Scalar multiplication: cA = [[c * a11, c * a12], ..., [c * an1, c * ann]]
Matrix subtraction: A - B = [[a11 - b11, a12 - b12], ..., [an1 - bn1, ann - bnn]]

Theorems

-

Suitable Grade Level

Grades 9-12