Math Problem Statement

Given matrices A = [[2, 4], [3, 9]] and B = [[-3, 9], [-2, -4]], compute 2A - B.

Solution

Let's solve the problem.

We are given matrices AA and BB:

A=(2439),B=(3924).A = \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 9 \\ -2 & -4 \end{pmatrix}.

We need to compute 2AB2A - B.

Step 1: Compute 2A2A

Multiply every element in AA by 2: 2A=2(2439)=(48618).2A = 2 \cdot \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 6 & 18 \end{pmatrix}.

Step 2: Subtract BB from 2A2A

Now subtract BB element-wise from 2A2A: 2AB=(48618)(3924).2A - B = \begin{pmatrix} 4 & 8 \\ 6 & 18 \end{pmatrix} - \begin{pmatrix} -3 & 9 \\ -2 & -4 \end{pmatrix}.

Perform the subtraction: 2AB=(4(3)896(2)18(4))=(71822).2A - B = \begin{pmatrix} 4 - (-3) & 8 - 9 \\ 6 - (-2) & 18 - (-4) \end{pmatrix} = \begin{pmatrix} 7 & -1 \\ 8 & 22 \end{pmatrix}.

Final Answer:

2AB=(71822).2A - B = \begin{pmatrix} 7 & -1 \\ 8 & 22 \end{pmatrix}.

This corresponds to option (3).

Let me know if you need further details!

Questions to Explore:

  1. How do matrix addition and subtraction work element-wise?
  2. How does scalar multiplication affect the elements of a matrix?
  3. What are the properties of matrix operations (associativity, commutativity)?
  4. Can you generalize nA+BnA + B for nRn \in \mathbb{R}?
  5. Why does the order of operations matter in matrix computations?

Tip: Always double-check arithmetic when dealing with matrix operations to avoid small calculation errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Scalar Multiplication
Matrix Subtraction

Formulas

Scalar Multiplication: cA = [[c * a_ij]] for all i, j
Matrix Subtraction: A - B = [[a_ij - b_ij]] for all i, j

Theorems

-

Suitable Grade Level

Grades 9-12