Math Problem Statement

Given the matrices A = [[2, 4], [3, 9]] and B = [[-3, -9], [-2, -4]], calculate 2A - B.

Solution

To solve the given problem 2AB2A - B, let us break it down step by step.

Given Matrices:

A=(2439),B=(3924)A = \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & -9 \\ -2 & -4 \end{pmatrix}

We need to calculate: 2AB2A - B

Step 1: Calculate 2A2A

Multiply each element of AA by 2: 2A=2(2439)=(48618)2A = 2 \cdot \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 6 & 18 \end{pmatrix}

Step 2: Calculate 2AB2A - B

Subtract BB from 2A2A: 2AB=(48618)(3924)2A - B = \begin{pmatrix} 4 & 8 \\ 6 & 18 \end{pmatrix} - \begin{pmatrix} -3 & -9 \\ -2 & -4 \end{pmatrix}

Perform element-wise subtraction: 2AB=(4(3)8(9)6(2)18(4))2A - B = \begin{pmatrix} 4 - (-3) & 8 - (-9) \\ 6 - (-2) & 18 - (-4) \end{pmatrix} 2AB=(4+38+96+218+4)2A - B = \begin{pmatrix} 4 + 3 & 8 + 9 \\ 6 + 2 & 18 + 4 \end{pmatrix} 2AB=(717822)2A - B = \begin{pmatrix} 7 & 17 \\ 8 & 22 \end{pmatrix}

Final Answer:

(717822)\boxed{\begin{pmatrix} 7 & 17 \\ 8 & 22 \end{pmatrix}}

This matches option 3.

Would you like me to provide additional details on the steps or explain matrix operations further?


Here are 5 related questions to expand your understanding:

  1. What are the basic operations in matrix arithmetic?
  2. How does scalar multiplication of a matrix work?
  3. Can you calculate A+BA + B using the given matrices?
  4. How do you determine if two matrices are equal?
  5. What happens when you multiply two matrices together?

Tip: Always align matrices properly when performing subtraction or addition to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Arithmetic
Scalar Multiplication
Matrix Subtraction

Formulas

Scalar multiplication: cA = c * A_ij
Matrix subtraction: (A - B)_ij = A_ij - B_ij

Theorems

-

Suitable Grade Level

Grades 9-12