Math Problem Statement

A=2 -1 3 0 et B=5 4 1 8, Calculer A²+2A*B+B².

Solution

Given matrices A=[2130]A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} and B=[5418]B = \begin{bmatrix} 5 & 4 \\ 1 & 8 \end{bmatrix}, we need to calculate:

A2+2AB+B2.A^2 + 2AB + B^2.

Step 1: Calculate A2A^2

A2=AA=[2130][2130].A^2 = A \cdot A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix}. Perform the matrix multiplication: A2=[(22+(1)3)(21+(1)0)(32+03)(31+00)]=[1263].A^2 = \begin{bmatrix} (2 \cdot 2 + (-1) \cdot 3) & (2 \cdot -1 + (-1) \cdot 0) \\ (3 \cdot 2 + 0 \cdot 3) & (3 \cdot -1 + 0 \cdot 0) \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 6 & -3 \end{bmatrix}.

Step 2: Calculate 2AB2AB

AB=[2130][5418].AB = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} \cdot \begin{bmatrix} 5 & 4 \\ 1 & 8 \end{bmatrix}. Perform the matrix multiplication: AB=[(25+(1)1)(24+(1)8)(35+01)(34+08)]=[901512].AB = \begin{bmatrix} (2 \cdot 5 + (-1) \cdot 1) & (2 \cdot 4 + (-1) \cdot 8) \\ (3 \cdot 5 + 0 \cdot 1) & (3 \cdot 4 + 0 \cdot 8) \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 15 & 12 \end{bmatrix}. Now, multiply by 2: 2AB=2[901512]=[1803024].2AB = 2 \cdot \begin{bmatrix} 9 & 0 \\ 15 & 12 \end{bmatrix} = \begin{bmatrix} 18 & 0 \\ 30 & 24 \end{bmatrix}.

Step 3: Calculate B2B^2

B2=BB=[5418][5418].B^2 = B \cdot B = \begin{bmatrix} 5 & 4 \\ 1 & 8 \end{bmatrix} \cdot \begin{bmatrix} 5 & 4 \\ 1 & 8 \end{bmatrix}. Perform the matrix multiplication: B2=[(55+41)(54+48)(15+81)(14+88)]=[29521368].B^2 = \begin{bmatrix} (5 \cdot 5 + 4 \cdot 1) & (5 \cdot 4 + 4 \cdot 8) \\ (1 \cdot 5 + 8 \cdot 1) & (1 \cdot 4 + 8 \cdot 8) \end{bmatrix} = \begin{bmatrix} 29 & 52 \\ 13 & 68 \end{bmatrix}.

Step 4: Add A2+2AB+B2A^2 + 2AB + B^2

A2+2AB+B2=[1263]+[1803024]+[29521368].A^2 + 2AB + B^2 = \begin{bmatrix} 1 & -2 \\ 6 & -3 \end{bmatrix} + \begin{bmatrix} 18 & 0 \\ 30 & 24 \end{bmatrix} + \begin{bmatrix} 29 & 52 \\ 13 & 68 \end{bmatrix}. Add the matrices element by element: A2+2AB+B2=[1+18+292+0+526+30+133+24+68]=[48504989].A^2 + 2AB + B^2 = \begin{bmatrix} 1 + 18 + 29 & -2 + 0 + 52 \\ 6 + 30 + 13 & -3 + 24 + 68 \end{bmatrix} = \begin{bmatrix} 48 & 50 \\ 49 & 89 \end{bmatrix}.

Final Answer:

A2+2AB+B2=[48504989].A^2 + 2AB + B^2 = \begin{bmatrix} 48 & 50 \\ 49 & 89 \end{bmatrix}.

Would you like to go over any specific step in detail?


Here are five related questions for deeper exploration:

  1. How do you verify if the result of matrix multiplication is correct?
  2. Can you calculate (A+B)2(A + B)^2 and compare it with the above result?
  3. What happens when you calculate A3+B3A^3 + B^3?
  4. How does the commutative property differ for addition and multiplication of matrices?
  5. How do eigenvalues and eigenvectors of AA and BB relate to their powers?

Tip: Always check the dimensions of the matrices before performing operations to ensure they are compatible.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Multiplication
Matrix Addition

Formulas

Matrix multiplication: (AB)_{ij} = Σ_k (A_{ik} * B_{kj})
Matrix addition: (A + B)_{ij} = A_{ij} + B_{ij}
Quadratic form for matrices: A² + 2AB + B²

Theorems

Associative property of matrix multiplication
Distributive property of matrix operations

Suitable Grade Level

Grades 11-12 and college-level