Math Problem Statement

Solve this question about unit vector topic

Solve this question about unit vector topic

Solution

To solve this question, let's break down the information provided:

Step 1: Analyze the Information Given

The question asks to find the magnitude of the vector 5ax+N3M5 \vec{a}_x + \vec{N} - 3 \vec{M}.

We also see:

  • Vector M\vec{M} is defined as M=10ax+4ay\vec{M} = -10 \vec{a}_x + 4 \vec{a}_y.
  • Vector N\vec{N} is given as N=8ax+7ay2az\vec{N} = 8 \vec{a}_x + 7 \vec{a}_y - 2 \vec{a}_z.

The vector expression provided is: 5ax+N3M5 \vec{a}_x + \vec{N} - 3 \vec{M}

Step 2: Substitute M\vec{M} and N\vec{N} into the Expression

Using the definitions of M\vec{M} and N\vec{N}:

  1. Substitute N\vec{N}: N=8ax+7ay2az\vec{N} = 8 \vec{a}_x + 7 \vec{a}_y - 2 \vec{a}_z

  2. Substitute M\vec{M}: M=10ax+4ay\vec{M} = -10 \vec{a}_x + 4 \vec{a}_y

Now substitute these into 5ax+N3M5 \vec{a}_x + \vec{N} - 3 \vec{M}:

5ax+(8ax+7ay2az)3(10ax+4ay)5 \vec{a}_x + (8 \vec{a}_x + 7 \vec{a}_y - 2 \vec{a}_z) - 3 (-10 \vec{a}_x + 4 \vec{a}_y)

Step 3: Simplify Each Component

Expanding each part:

  1. The 5ax5 \vec{a}_x term remains as 5ax5 \vec{a}_x.

  2. Adding N\vec{N}: 5ax+8ax+7ay2az=13ax+7ay2az5 \vec{a}_x + 8 \vec{a}_x + 7 \vec{a}_y - 2 \vec{a}_z = 13 \vec{a}_x + 7 \vec{a}_y - 2 \vec{a}_z

  3. Distributing the 3-3 across M\vec{M}: 3(10ax+4ay)=30ax12ay-3 (-10 \vec{a}_x + 4 \vec{a}_y) = 30 \vec{a}_x - 12 \vec{a}_y

  4. Now add everything together: (13ax+7ay2az)+(30ax12ay)=43ax5ay2az(13 \vec{a}_x + 7 \vec{a}_y - 2 \vec{a}_z) + (30 \vec{a}_x - 12 \vec{a}_y) = 43 \vec{a}_x - 5 \vec{a}_y - 2 \vec{a}_z

So the resulting vector is: 43ax5ay2az43 \vec{a}_x - 5 \vec{a}_y - 2 \vec{a}_z

Step 4: Find the Magnitude of the Vector

To find the magnitude, we use the formula for the magnitude of a vector V=Vxax+Vyay+Vzaz\vec{V} = V_x \vec{a}_x + V_y \vec{a}_y + V_z \vec{a}_z: V=Vx2+Vy2+Vz2|\vec{V}| = \sqrt{V_x^2 + V_y^2 + V_z^2}

Here, Vx=43V_x = 43, Vy=5V_y = -5, and Vz=2V_z = -2.

So, V=432+(5)2+(2)2|\vec{V}| = \sqrt{43^2 + (-5)^2 + (-2)^2} =1849+25+4= \sqrt{1849 + 25 + 4} =1878= \sqrt{1878} 43.33\approx 43.33

Final Answer

The magnitude of the vector 5ax+N3M5 \vec{a}_x + \vec{N} - 3 \vec{M} is approximately: 43.3343.33

Would you like a more detailed explanation on any specific part?


Here are 5 related questions for further exploration:

  1. How would the result change if the direction of one component in M\vec{M} or N\vec{N} was reversed?
  2. What is the importance of unit vectors in vector operations?
  3. How can we determine if two vectors are perpendicular or parallel using their components?
  4. How does vector addition differ from scalar addition?
  5. What are some real-world applications where vector magnitude is essential?

Tip: Always break down vector operations step-by-step, especially when multiple vectors are involved, to avoid confusion and errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Operations
Unit Vectors
Vector Magnitude

Formulas

Magnitude formula: |V| = sqrt(V_x^2 + V_y^2 + V_z^2)
Vector addition and scalar multiplication

Theorems

-

Suitable Grade Level

Grades 11-12