Math Problem Statement

Find the values of the following log: (a) log_2 5 + log_2 1.6 (b) log_6 24 + log_6 15 - log_6 60

Solution

Here is the solution for Example 13:

Part (a): log25+log21.6\log_2 5 + \log_2 1.6

Using the logarithmic property: logbA+logbB=logb(AB)\log_b A + \log_b B = \log_b (A \cdot B) we combine the two terms: log25+log21.6=log2(51.6).\log_2 5 + \log_2 1.6 = \log_2 (5 \cdot 1.6).

Simplify the product: 51.6=8.5 \cdot 1.6 = 8.

Thus: log2(51.6)=log28.\log_2 (5 \cdot 1.6) = \log_2 8.

Since 8=238 = 2^3, we know: log28=3.\log_2 8 = 3.

Final Answer for (a): 33.


Part (b): log624+log615log660\log_6 24 + \log_6 15 - \log_6 60

Using the logarithmic properties:

  1. Addition of logs: logbA+logbB=logb(AB)\log_b A + \log_b B = \log_b (A \cdot B),
  2. Subtraction of logs: logbAlogbC=logb(AC).\log_b A - \log_b C = \log_b \left( \frac{A}{C} \right).

First, combine the terms: log624+log615log660=log6(241560).\log_6 24 + \log_6 15 - \log_6 60 = \log_6 \left( \frac{24 \cdot 15}{60} \right).

Simplify the expression inside the log: 241560=36060=6.\frac{24 \cdot 15}{60} = \frac{360}{60} = 6.

Thus: log6(241560)=log66.\log_6 \left( \frac{24 \cdot 15}{60} \right) = \log_6 6.

Since log66=1\log_6 6 = 1 (because 6=616 = 6^1), we get: log66=1.\log_6 6 = 1.

Final Answer for (b): 11.


Final Results:

  • (a): 33
  • (b): 11

Do you want a detailed explanation of any specific step? Let me know!

Related Questions:

  1. Solve log39+log327\log_3 9 + \log_3 27.
  2. Simplify log525+log51\log_5 25 + \log_5 1.
  3. Evaluate log416log44\log_4 16 - \log_4 4.
  4. Simplify log714+log749log77\log_7 14 + \log_7 49 - \log_7 7.
  5. Solve log24+log28log22\log_2 4 + \log_2 8 - \log_2 2.

Tip: Remember, logarithmic rules make it easier to combine, split, or simplify expressions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Properties
Logarithmic Simplification

Formulas

log_b(A) + log_b(B) = log_b(A * B)
log_b(A) - log_b(C) = log_b(A / C)

Theorems

Logarithmic Product Rule
Logarithmic Quotient Rule

Suitable Grade Level

Grades 9-11