Math Problem Statement

2log6 4+3log6 x-4log6 y

Solution

The given expression is:

2log64+3log6x4log6y2 \log_6 4 + 3 \log_6 x - 4 \log_6 y

We can simplify this by using the logarithmic properties:

  1. Power Rule: logb(an)=nlogba\log_b (a^n) = n \log_b a.
  2. Product Rule: logba+logbb=logb(ab)\log_b a + \log_b b = \log_b (a \cdot b).
  3. Quotient Rule: logbalogbb=logb(ab)\log_b a - \log_b b = \log_b \left(\frac{a}{b}\right).

Step-by-step simplification:

  1. Apply the Power Rule: 2log64=log642=log6162 \log_6 4 = \log_6 4^2 = \log_6 16 3log6x=log6x33 \log_6 x = \log_6 x^3 4log6y=log6y44 \log_6 y = \log_6 y^4

  2. Substitute these into the original expression: log616+log6x3log6y4\log_6 16 + \log_6 x^3 - \log_6 y^4

  3. Apply the Product Rule to the first two terms: log6(16x3)log6y4\log_6 (16 \cdot x^3) - \log_6 y^4

  4. Finally, apply the Quotient Rule: log6(16x3y4)\log_6 \left( \frac{16 \cdot x^3}{y^4} \right)

Final simplified expression:

log6(16x3y4)\log_6 \left( \frac{16x^3}{y^4} \right)

Would you like any additional details or further explanation?

Here are 5 related questions for practice:

  1. Simplify 3log25+log284log223 \log_2 5 + \log_2 8 - 4 \log_2 2.
  2. Solve log3(x2+3x4)=2\log_3 (x^2 + 3x - 4) = 2.
  3. Expand logb(ab2)\log_b (a \cdot b^2) using logarithmic properties.
  4. Simplify log749+log7xlog7y2\log_7 49 + \log_7 x - \log_7 y^2.
  5. Solve for xx in 2log4x=32 \log_4 x = 3.

Tip: Always keep logarithmic properties in mind to simplify complex expressions easily!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Algebra
Simplification

Formulas

Power Rule: log_b(a^n) = n log_b(a)
Product Rule: log_b(a) + log_b(b) = log_b(a * b)
Quotient Rule: log_b(a) - log_b(b) = log_b(a / b)

Theorems

Logarithmic properties

Suitable Grade Level

Grades 9-12