Math Problem Statement

log2(6) − log2(12) + log2(32)

Solution

To solve the expression log2(6)log2(12)+log2(32)\log_2(6) - \log_2(12) + \log_2(32), we can use the properties of logarithms, specifically the subtraction and addition rules:

  1. Subtraction Property: logb(x)logb(y)=logb(xy)\log_b(x) - \log_b(y) = \log_b\left(\frac{x}{y}\right)
  2. Addition Property: logb(x)+logb(y)=logb(xy)\log_b(x) + \log_b(y) = \log_b(x \cdot y)

Let's apply these properties step by step.

Step 1: Combine log2(6)log2(12)\log_2(6) - \log_2(12)

Using the subtraction property: log2(6)log2(12)=log2(612)=log2(12)\log_2(6) - \log_2(12) = \log_2\left(\frac{6}{12}\right) = \log_2\left(\frac{1}{2}\right)

Step 2: Simplify log2(32)\log_2(32)

Since 32=2532 = 2^5, we can rewrite log2(32)\log_2(32) as: log2(32)=5\log_2(32) = 5

Step 3: Combine log2(12)+log2(32)\log_2\left(\frac{1}{2}\right) + \log_2(32)

Now we add the results from Step 1 and Step 2. Using the addition property: log2(12)+log2(32)=log2(1232)\log_2\left(\frac{1}{2}\right) + \log_2(32) = \log_2\left(\frac{1}{2} \cdot 32\right)

Step 4: Simplify 1232\frac{1}{2} \cdot 32

1232=16\frac{1}{2} \cdot 32 = 16

So, we have: log2(16)\log_2(16)

Step 5: Simplify log2(16)\log_2(16)

Since 16=2416 = 2^4, we can rewrite log2(16)\log_2(16) as: log2(16)=4\log_2(16) = 4

Final Answer

log2(6)log2(12)+log2(32)=4\log_2(6) - \log_2(12) + \log_2(32) = 4

Would you like a breakdown of these properties or have questions on any steps?

Here are 5 related questions for further exploration:

  1. What would happen if the base were changed from 2 to 10?
  2. How would you approach log2(8)log2(4)+log2(64)\log_2(8) - \log_2(4) + \log_2(64)?
  3. Why is logb(xy)=ylogb(x)\log_b(x^y) = y \cdot \log_b(x) a useful property in simplifying expressions?
  4. Can you find the result of log2(48)log2(6)+log2(4)\log_2(48) - \log_2(6) + \log_2(4)?
  5. How do you compute log2(1/4)\log_2(1/4) using the properties of logarithms?

Tip: Always check if terms in a logarithmic expression can be simplified with powers or fractions before calculating.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Logarithmic Properties

Formulas

log_b(x) - log_b(y) = log_b(x/y)
log_b(x) + log_b(y) = log_b(x * y)
log_b(x^y) = y * log_b(x)

Theorems

Properties of Logarithms

Suitable Grade Level

Grades 9-12