Math Problem Statement

Lineariser cos³x

Solution

To linearize cos3x\cos^3x, we use trigonometric identities to express the term in a linear form with respect to basic trigonometric functions. Here's the process:

Step 1: Use the power reduction formula

The power reduction formula for cosine is: cos2x=1+cos(2x)2.\cos^2x = \frac{1 + \cos(2x)}{2}.

Therefore: cos3x=cosxcos2x=cosx1+cos(2x)2.\cos^3x = \cos x \cdot \cos^2x = \cos x \cdot \frac{1 + \cos(2x)}{2}.

Step 2: Expand the expression

Substituting the formula: cos3x=cosx2+cosxcos(2x)2.\cos^3x = \frac{\cos x}{2} + \frac{\cos x \cdot \cos(2x)}{2}.

Step 3: Simplify the second term

Using the product-to-sum identity: [ \cos x \cdot \cos(2x) = \frac{1}{2} \left[\cos(x - 2x) + \cos(x + 2x)\right] = \frac{1}{2} \left[\cos(-x) + \cos(3x)\right]. ] Since cos(x)=cos(x)\cos(-x) = \cos(x): cosxcos(2x)=12[cos(x)+cos(3x)].\cos x \cdot \cos(2x) = \frac{1}{2} \left[\cos(x) + \cos(3x)\right].

Step 4: Substitute back

Now, substitute this into the expression: cos3x=cosx2+12cos(x)+cos(3x)2.\cos^3x = \frac{\cos x}{2} + \frac{1}{2} \cdot \frac{\cos(x) + \cos(3x)}{2}.

Simplify: cos3x=cosx2+cosx4+cos(3x)4.\cos^3x = \frac{\cos x}{2} + \frac{\cos x}{4} + \frac{\cos(3x)}{4}.

Combine like terms: cos3x=2cosx4+cosx4+cos(3x)4=3cosx4+cos(3x)4.\cos^3x = \frac{2\cos x}{4} + \frac{\cos x}{4} + \frac{\cos(3x)}{4} = \frac{3\cos x}{4} + \frac{\cos(3x)}{4}.

Final Linearized Form:

cos3x=34cosx+14cos(3x).\cos^3x = \frac{3}{4} \cos x + \frac{1}{4} \cos(3x).

Let me know if you want further explanation or related examples!


Questions:

  1. What is the purpose of linearizing trigonometric expressions?
  2. How do power-reduction formulas simplify expressions like cosnx\cos^n x?
  3. Can cosnx\cos^n x be linearized for any nn? How does the process vary with higher powers?
  4. How are product-to-sum formulas applied to trigonometric products?
  5. What are some applications of linearized trigonometric expressions in calculus or physics?

Tip:

When working with higher powers of trigonometric functions, always check for symmetry and reduction formulas—they simplify complex expressions significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Power reduction
Product-to-sum identities

Formulas

Power reduction formula: cos²x = (1 + cos(2x))/2
Product-to-sum formula: cos(A)cos(B) = (cos(A-B) + cos(A+B))/2

Theorems

Trigonometric identities for simplifying expressions

Suitable Grade Level

Grades 11-12