Math Problem Statement

lav opgaver ligesom denne:

Når en dykker bevæger sig ned under vandoverfladen, påvirkes hun af et højere tryk på grund af vægten af vandet. Ved en dybde på 5 meter måles trykket til 1519 hPa, og ved en dybde på 20 meter måles trykket til 3036 hPa. Bestem en funktionsforskrift for P(d). En dykker påvirkes med et tryk på 4000 hPa. Bestem dybden, som dykkeren befinder sig i.

Solution

In the given problem, the task involves determining the linear relationship between depth and pressure underwater.

Let's break it down:

Summary:

  • The pressure PP increases linearly as a diver moves deeper underwater.
  • At a depth of 5 meters, the pressure is 1519 hPa.
  • At a depth of 20 meters, the pressure is 3036 hPa.
  • Pressure PP is measured in hPa (hectopascals), and depth dd in meters.

Part a) Find a function for P(d)P(d):

Since P(d)P(d) is a linear function, we can assume it has the form: P(d)=ad+bP(d) = a \cdot d + b Where:

  • aa is the rate of change of pressure with depth (slope),
  • bb is the pressure at depth 0 meters (y-intercept).

We are given two points:

  • P(5)=1519P(5) = 1519
  • P(20)=3036P(20) = 3036

We can calculate the slope aa using the formula for the slope between two points: a=P(20)P(5)205=3036151915=151715=101.13hPa/ma = \frac{P(20) - P(5)}{20 - 5} = \frac{3036 - 1519}{15} = \frac{1517}{15} = 101.13 \, \text{hPa/m}

Now, we can substitute a=101.13a = 101.13 into the equation for P(d)P(d): P(d)=101.13d+bP(d) = 101.13 \cdot d + b

To find bb, substitute d=5d = 5 and P(5)=1519P(5) = 1519 into the equation: 1519=101.135+b1519 = 101.13 \cdot 5 + b 1519=505.65+b1519 = 505.65 + b b=1519505.65=1013.35hPab = 1519 - 505.65 = 1013.35 \, \text{hPa}

So, the function for pressure as a function of depth is: P(d)=101.13d+1013.35P(d) = 101.13 \cdot d + 1013.35

Part b) Find the depth where the diver experiences a pressure of 4000 hPa:

We have the equation: P(d)=101.13d+1013.35P(d) = 101.13 \cdot d + 1013.35 Set P(d)=4000P(d) = 4000 and solve for dd: 4000=101.13d+1013.354000 = 101.13 \cdot d + 1013.35 40001013.35=101.13d4000 - 1013.35 = 101.13 \cdot d 2986.65=101.13d2986.65 = 101.13 \cdot d d=2986.65101.13=29.53metersd = \frac{2986.65}{101.13} = 29.53 \, \text{meters}

Thus, the diver is at a depth of approximately 29.53 meters.

Would you like further details or explanations on any part of this problem?

Here are some related questions to consider:

  1. How would the equation change if the initial pressure (at 0 meters) were different?
  2. How does the slope represent the physical situation in this problem?
  3. Can you express the pressure in another unit, like Pascal (Pa) instead of hectoPascal?
  4. How does the pressure change if the diver goes to a depth of 10 meters?
  5. What happens to the pressure if the depth doubles?

Tip: Remember that a linear relationship means the pressure increases at a constant rate as the depth increases!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Functions
Algebra
Rate of Change

Formulas

P(d) = a * d + b (Linear Function Equation)
Slope formula: a = (y2 - y1) / (x2 - x1)

Theorems

-

Suitable Grade Level

Grades 10-12