Math Problem Statement

Evaluate the line integral Integral from Upper C to font size decreased by 10 gradient phi times d Bold r for the following function phi and oriented curve C ​(a) using a parametric description of C and evaluating the integral​ directly, and ​(b) using the Fundamental Theorem for line integrals. phi​(x,y,z)equalsStartFraction x squared plus y squared plus z squared Over 2 EndFraction ​;       ​ C: r​(t)equalsleft angle cosine t comma sine t comma StartFraction t Over pi EndFraction right angle ​, for StartFraction 3 pi Over 4 EndFraction less than or equalstless than or equalsStartFraction 5 pi Over 4 EndFraction

Solution

To evaluate the line integral

Cϕdr\int_C \nabla \phi \cdot d\mathbf{r}

for the given scalar function ϕ(x,y,z)=x2+y2+z22\phi(x, y, z) = \frac{x^2 + y^2 + z^2}{2} along the curve C:r(t)=cost,sint,tπC: \mathbf{r}(t) = \langle \cos t, \sin t, \frac{t}{\pi} \rangle over the interval t[3π4,5π4]t \in \left[ \frac{3\pi}{4}, \frac{5\pi}{4} \right], we can use both (a) a parametric approach, and (b) the Fundamental Theorem for line integrals.

Step (a): Direct Evaluation Using Parametric Description

  1. Compute ϕ\nabla \phi:

    ϕ(x,y,z)=x2+y2+z22\phi(x, y, z) = \frac{x^2 + y^2 + z^2}{2}

    The gradient ϕ=(ϕx,ϕy,ϕz)\nabla \phi = \left( \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right) is:

    ϕx=x,ϕy=y,ϕz=z\frac{\partial \phi}{\partial x} = x, \quad \frac{\partial \phi}{\partial y} = y, \quad \frac{\partial \phi}{\partial z} = z

    Thus,

    ϕ=x,y,z\nabla \phi = \langle x, y, z \rangle

  2. Parametrize ϕ\nabla \phi along CC:

    Since r(t)=cost,sint,tπ\mathbf{r}(t) = \langle \cos t, \sin t, \frac{t}{\pi} \rangle, we substitute x=costx = \cos t, y=sinty = \sin t, and z=tπz = \frac{t}{\pi} into ϕ\nabla \phi:

    ϕ(r(t))=cost,sint,tπ\nabla \phi(\mathbf{r}(t)) = \langle \cos t, \sin t, \frac{t}{\pi} \rangle

  3. Compute drd\mathbf{r}:

    Differentiate r(t)\mathbf{r}(t) with respect to tt:

    drdt=sint,cost,1π\frac{d\mathbf{r}}{dt} = \langle -\sin t, \cos t, \frac{1}{\pi} \rangle

    So, dr=sint,cost,1πdtd\mathbf{r} = \langle -\sin t, \cos t, \frac{1}{\pi} \rangle \, dt.

  4. Compute ϕdr\nabla \phi \cdot d\mathbf{r}:

    Now, calculate the dot product ϕ(r(t))drdt\nabla \phi(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt}:

    ϕdrdt=cost,sint,tπsint,cost,1π\nabla \phi \cdot \frac{d\mathbf{r}}{dt} = \langle \cos t, \sin t, \frac{t}{\pi} \rangle \cdot \langle -\sin t, \cos t, \frac{1}{\pi} \rangle

    Expanding this dot product:

    =(cost)(sint)+(sint)(cost)+tπ1π= (\cos t)(-\sin t) + (\sin t)(\cos t) + \frac{t}{\pi} \cdot \frac{1}{\pi}

    Simplify each term:

    =costsint+costsint+tπ2= -\cos t \sin t + \cos t \sin t + \frac{t}{\pi^2}

    The terms costsint-\cos t \sin t and costsint\cos t \sin t cancel each other out, leaving:

    =tπ2= \frac{t}{\pi^2}

  5. Integrate over tt:

    Now, integrate from t=3π4t = \frac{3\pi}{4} to t=5π4t = \frac{5\pi}{4}:

    Cϕdr=3π45π4tπ2dt\int_C \nabla \phi \cdot d\mathbf{r} = \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{t}{\pi^2} \, dt

    This simplifies to:

    =1π23π45π4tdt= \frac{1}{\pi^2} \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} t \, dt

    Evaluating the integral:

    =1π2[t22]3π45π4= \frac{1}{\pi^2} \cdot \left[ \frac{t^2}{2} \right]_{\frac{3\pi}{4}}^{\frac{5\pi}{4}}

    Substituting the limits:

    =1π2((5π/4)22(3π/4)22)= \frac{1}{\pi^2} \cdot \left( \frac{(5\pi/4)^2}{2} - \frac{(3\pi/4)^2}{2} \right)

    =1π212(25π2169π216)= \frac{1}{\pi^2} \cdot \frac{1}{2} \left( \frac{25\pi^2}{16} - \frac{9\pi^2}{16} \right)

    Simplify further:

    =1π21216π216(259)= \frac{1}{\pi^2} \cdot \frac{1}{2} \cdot \frac{16\pi^2}{16} \left( 25 - 9 \right)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Line Integrals
Gradient Fields

Formulas

Gradient of phi, \( \nabla \phi = \left( \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right) \)
Dot product for line integral, \( \nabla \phi \cdot d\mathbf{r} \)
Integral over parameterized interval

Theorems

Fundamental Theorem for Line Integrals

Suitable Grade Level

Undergraduate