Math Problem Statement

Evaluate ∫C F ⋅ dr, where F(x, y, z) = x²i + y²j + z²k and C: r(t) = 2sin(t)i + 2cos(t)j + ½t²k, 0 ≤ t ≤ π.

Solution

To solve the given line integral CFdr\int_C \mathbf{F} \cdot d\mathbf{r}, we proceed as follows:

Problem Breakdown:

  1. Vector field: F(x,y,z)=x2i+y2j+z2k\mathbf{F}(x, y, z) = x^2\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k}
  2. Parameterization of the curve CC: r(t)=2sin(t)i+2cos(t)j+12t2k,0tπ\mathbf{r}(t) = 2\sin(t)\mathbf{i} + 2\cos(t)\mathbf{j} + \frac{1}{2}t^2\mathbf{k}, \, 0 \leq t \leq \pi
  3. Differential displacement vector: dr=drdtdtd\mathbf{r} = \frac{d\mathbf{r}}{dt}dt

Steps to Evaluate:

  1. Compute dr/dtd\mathbf{r}/dt from r(t)\mathbf{r}(t): r(t)=(2sin(t),2cos(t),12t2)\mathbf{r}(t) = (2\sin(t), 2\cos(t), \frac{1}{2}t^2) Differentiating: drdt=(2cos(t),2sin(t),t)\frac{d\mathbf{r}}{dt} = (2\cos(t), -2\sin(t), t) Hence, dr=(2cos(t)i2sin(t)j+tk)dtd\mathbf{r} = (2\cos(t)\mathbf{i} - 2\sin(t)\mathbf{j} + t\mathbf{k})dt.

  2. Substitute r(t)\mathbf{r}(t) into F(x,y,z)\mathbf{F}(x, y, z): Using r(t)=(x,y,z)=(2sin(t),2cos(t),12t2)\mathbf{r}(t) = (x, y, z) = (2\sin(t), 2\cos(t), \frac{1}{2}t^2), F(x,y,z)=(2sin(t))2i+(2cos(t))2j+(12t2)2k\mathbf{F}(x, y, z) = (2\sin(t))^2\mathbf{i} + (2\cos(t))^2\mathbf{j} + \left(\frac{1}{2}t^2\right)^2\mathbf{k} Simplify: F(x,y,z)=4sin2(t)i+4cos2(t)j+14t4k.\mathbf{F}(x, y, z) = 4\sin^2(t)\mathbf{i} + 4\cos^2(t)\mathbf{j} + \frac{1}{4}t^4\mathbf{k}.

  3. Compute the dot product Fdr\mathbf{F} \cdot d\mathbf{r}: Substitute F(x,y,z)\mathbf{F}(x, y, z) and drd\mathbf{r} into the dot product: Fdr=(4sin2(t))(2cos(t))+(4cos2(t))(2sin(t))+(14t4)(t)\mathbf{F} \cdot d\mathbf{r} = \left(4\sin^2(t)\right)(2\cos(t)) + \left(4\cos^2(t)\right)(-2\sin(t)) + \left(\frac{1}{4}t^4\right)(t) Simplify each term: Fdr=8sin2(t)cos(t)8cos2(t)sin(t)+14t5.\mathbf{F} \cdot d\mathbf{r} = 8\sin^2(t)\cos(t) - 8\cos^2(t)\sin(t) + \frac{1}{4}t^5. Factorize the trigonometric terms: Fdr=8sin(t)cos(t)(sin(t)cos(t))+14t5.\mathbf{F} \cdot d\mathbf{r} = 8\sin(t)\cos(t)(\sin(t) - \cos(t)) + \frac{1}{4}t^5.

  4. Integrate over t[0,π]t \in [0, \pi]: CFdr=0π[8sin(t)cos(t)(sin(t)cos(t))+14t5]dt.\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^\pi \left[8\sin(t)\cos(t)(\sin(t) - \cos(t)) + \frac{1}{4}t^5\right] dt. Separate the integral: CFdr=0π8sin(t)cos(t)(sin(t)cos(t))dt+0π14t5dt.\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^\pi 8\sin(t)\cos(t)(\sin(t) - \cos(t)) dt + \int_0^\pi \frac{1}{4}t^5 dt.

  5. Evaluate the trigonometric integral: Let u=sin(t)u = \sin(t), du=cos(t)dtdu = \cos(t)dt. Change limits accordingly (u(0)=0,u(π)=0u(0) = 0, u(\pi) = 0): The term 0π8sin(t)cos(t)(sin(t)cos(t))dt\int_0^\pi 8\sin(t)\cos(t)(\sin(t) - \cos(t)) dt simplifies and evaluates to zero because the limits are symmetric.

  6. Evaluate the polynomial integral: 0π14t5dt=14t660π=124π6.\int_0^\pi \frac{1}{4}t^5 dt = \frac{1}{4} \cdot \frac{t^6}{6}\Big|_0^\pi = \frac{1}{24}\pi^6.

Final Result:

CFdr=π624.\int_C \mathbf{F} \cdot d\mathbf{r} = \frac{\pi^6}{24}.

Would you like further details or explanations?
Here are 5 related questions to explore:

  1. How is the parameterization of a curve used in evaluating line integrals?
  2. What are the typical applications of line integrals in physics or engineering?
  3. How do symmetry properties simplify integral computations?
  4. How can we interpret Fdr\mathbf{F} \cdot d\mathbf{r} geometrically?
  5. What are the differences between line integrals of scalar and vector fields?

Tip: Always check for symmetry in trigonometric terms; it can greatly simplify integral evaluations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Line Integrals
Vector Fields
Parameterization of Curves

Formulas

F ⋅ dr = F(r(t)) ⋅ (dr/dt) dt
dr/dt = derivative of r(t) with respect to t
Integral of dot product over a parameterized curve

Theorems

Fundamental principles of vector calculus

Suitable Grade Level

Undergraduate - Calculus II or III