Math Problem Statement

Create a vector integral question

Solution

Problem:

Evaluate the line integral of the vector field F(x,y,z)=yi+xzj+z2k\mathbf{F}(x, y, z) = y\mathbf{i} + xz\mathbf{j} + z^2\mathbf{k} along the curve CC, where CC is given by the parametric equations: r(t)=ti+t2j+t3k,t[0,1].\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}, \quad t \in [0, 1].

Solution Steps:

  1. Find r(t)\mathbf{r}'(t): Differentiate r(t)\mathbf{r}(t) with respect to tt.
  2. Evaluate F(r(t))\mathbf{F}(\mathbf{r}(t)): Substitute the parametric equations into F(x,y,z)\mathbf{F}(x, y, z).
  3. Compute the dot product F(r(t))r(t)\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t).
  4. Integrate the result with respect to tt over [0,1][0, 1].

Would you like me to work out the solution or provide hints for each step?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Line Integrals
Parametric Equations

Formulas

Line integral formula: \( \int_C \mathbf{F} \cdot d\mathbf{r} \)
Parametric representation of a curve: \( \mathbf{r}(t) \)
Dot product: \( \mathbf{A} \cdot \mathbf{B} = A_xB_x + A_yB_y + A_zB_z \)

Theorems

Fundamental Theorem of Line Integrals

Suitable Grade Level

Undergraduate Calculus (Grades 12+)