Math Problem Statement

Find the Laplace Transform of the piecewise function f(t) defined as f(t) = t/τ for 0 < t < τ and f(t) = 1 for t > τ.

Solution

The problem asks to find the Laplace Transform of the function f(t)f(t) defined as:

t/\tau, & 0 < t < \tau, \\ 1, & t > \tau. \end{cases}$$ ### Solution: The Laplace Transform of $$f(t)$$ is given by: $$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} dt.$$ We split the integral into two parts based on the piecewise definition of $$f(t)$$: $$F(s) = \int_0^\tau \frac{t}{\tau} e^{-st} dt + \int_\tau^\infty e^{-st} dt.$$ #### 1. Evaluate the first integral: $$\int_0^\tau \frac{t}{\tau} e^{-st} dt.$$ Let $$A = \frac{1}{\tau}$$, so the integral becomes: $$A \int_0^\tau t e^{-st} dt.$$ Using integration by parts ($$u = t$$ and $$dv = e^{-st} dt$$): $$\int t e^{-st} dt = \left[ -\frac{t}{s} e^{-st} \right]_0^\tau + \int_0^\tau \frac{1}{s} e^{-st} dt.$$ For the second term, $$\int e^{-st} dt = -\frac{1}{s} e^{-st}$$. Substituting: \[ \int t e^{-st} dt = \left[ -\frac{t}{s} e^{-st} \right]_0^\tau + \left[ -\frac{1}{s^2} e^{-st} \right]_0^\tau. \] Evaluating at the limits $$t = \tau$$ and $$t = 0$$: $$\int t e^{-st} dt = -\frac{\tau}{s} e^{-s\tau} + \frac{1}{s^2} e^{-s\tau} - \left(0 - \frac{1}{s^2}\right).$$ Simplify: $$\int t e^{-st} dt = -\frac{\tau}{s} e^{-s\tau} + \frac{1}{s^2} e^{-s\tau} + \frac{1}{s^2}.$$ Multiplying by $$A = \frac{1}{\tau}$$: $$\int_0^\tau \frac{t}{\tau} e^{-st} dt = \frac{1}{\tau} \left(-\frac{\tau}{s} e^{-s\tau} + \frac{1}{s^2} e^{-s\tau} + \frac{1}{s^2}\right).$$ Simplify: $$\int_0^\tau \frac{t}{\tau} e^{-st} dt = -\frac{1}{s} e^{-s\tau} + \frac{1}{s^2 \tau} e^{-s\tau} + \frac{1}{s^2 \tau}.$$ #### 2. Evaluate the second integral: $$\int_\tau^\infty e^{-st} dt.$$ This is straightforward: $$\int_\tau^\infty e^{-st} dt = \left[ -\frac{1}{s} e^{-st} \right]_\tau^\infty.$$ At $$t = \infty$$, $$e^{-st} \to 0$$. At $$t = \tau$$: $$\int_\tau^\infty e^{-st} dt = 0 - \left(-\frac{1}{s} e^{-s\tau}\right).$$ Simplify: $$\int_\tau^\infty e^{-st} dt = \frac{1}{s} e^{-s\tau}.$$ #### 3. Combine results: $$F(s) = \left(-\frac{1}{s} e^{-s\tau} + \frac{1}{s^2 \tau} e^{-s\tau} + \frac{1}{s^2 \tau}\right) + \frac{1}{s} e^{-s\tau}.$$ Simplify terms: $$F(s) = \frac{1}{s^2 \tau} + \frac{1}{s^2 \tau} e^{-s\tau}.$$ This is the Laplace Transform of $$f(t)$$. Would you like a deeper explanation or further simplification? Here are some related questions to consider: 1. How is the Laplace Transform used in engineering applications? 2. Can you extend this result to other piecewise functions? 3. How would this result change if $$f(t)$$ was defined differently for $$t > \tau$$? 4. Can you verify this solution using numerical integration? 5. How do you handle Laplace Transforms of functions with discontinuities? **Tip:** Always check your piecewise definitions carefully while setting up integrals for Laplace Transforms!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transform
Piecewise Functions
Integration by Parts
Exponential Functions

Formulas

Laplace Transform formula: F(s) = ∫_0^∞ f(t)e^(-st) dt
Integration by parts: ∫u dv = uv - ∫v du

Theorems

Properties of Laplace Transform
Evaluation of piecewise integrals

Suitable Grade Level

Undergraduate (Engineering or Mathematics Courses)