Math Problem Statement

Find the Laplace transform of the function f(t), where f(t) = t for 0 < t < τ and f(t) = 1 for t > τ.

Solution

The problem asks to find the Laplace transform of the given piecewise function f(t)f(t), where:

  • f(t)=tf(t) = t for 0<t<τ0 < t < \tau
  • f(t)=1f(t) = 1 for t>τt > \tau

Let us compute the Laplace transform L{f(t)}\mathcal{L}\{f(t)\}, defined as:

L{f(t)}=0f(t)estdt\mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} dt

1. Split the Laplace Transform Based on f(t)f(t)

We divide the Laplace transform into two parts based on the piecewise definition of f(t)f(t):

L{f(t)}=0τtestdt+τ1estdt\mathcal{L}\{f(t)\} = \int_0^\tau t e^{-st} dt + \int_\tau^\infty 1 \cdot e^{-st} dt

2. Compute Each Part

(a) First Integral: 0τtestdt\int_0^\tau t e^{-st} dt

Using integration by parts:

  • Let u=tu = t, so du=dtdu = dt
  • Let dv=estdtdv = e^{-st} dt, so v=estsv = \frac{e^{-st}}{-s}

testdt=[tests]0τ+estsdt\int t e^{-st} dt = \left[ \frac{-t e^{-st}}{s} \right]_0^\tau + \int \frac{e^{-st}}{s} dt

Now compute: estsdt=ests2\int \frac{e^{-st}}{s} dt = \frac{-e^{-st}}{s^2}

So: 0τtestdt=[testsests2]0τ\int_0^\tau t e^{-st} dt = \left[ \frac{-t e^{-st}}{s} - \frac{e^{-st}}{s^2} \right]_0^\tau Evaluate the limits:

  • At t=τt = \tau: τesτsesτs2\frac{-\tau e^{-s\tau}}{s} - \frac{e^{-s\tau}}{s^2}
  • At t=0t = 0: 01s20 - \frac{1}{s^2}

Thus: 0τtestdt=τesτsesτs2+1s2\int_0^\tau t e^{-st} dt = \frac{-\tau e^{-s\tau}}{s} - \frac{e^{-s\tau}}{s^2} + \frac{1}{s^2}

(b) Second Integral: τestdt\int_\tau^\infty e^{-st} dt

This is a simple exponential integral: τestdt=[ests]τ\int_\tau^\infty e^{-st} dt = \left[ \frac{-e^{-st}}{s} \right]_\tau^\infty Evaluate the limits:

  • At t=t = \infty: 00
  • At t=τt = \tau: esτs\frac{-e^{-s\tau}}{s}

Thus: τestdt=esτs\int_\tau^\infty e^{-st} dt = \frac{e^{-s\tau}}{s}

3. Combine Results

Now combine the results from both parts: L{f(t)}=(τesτsesτs2+1s2)+esτs\mathcal{L}\{f(t)\} = \left( \frac{-\tau e^{-s\tau}}{s} - \frac{e^{-s\tau}}{s^2} + \frac{1}{s^2} \right) + \frac{e^{-s\tau}}{s}

Simplify: L{f(t)}=τesτs+1s2\mathcal{L}\{f(t)\} = \frac{-\tau e^{-s\tau}}{s} + \frac{1}{s^2}

Thus, the Laplace transform of f(t)f(t) is: L{f(t)}=τesτs+1s2\boxed{\mathcal{L}\{f(t)\} = \frac{-\tau e^{-s\tau}}{s} + \frac{1}{s^2}}

Let me know if you'd like further steps or clarifications! Here are some related questions:

  1. What is the physical interpretation of the Laplace transform in this context?
  2. How does the Laplace transform simplify differential equation solving?
  3. What happens to the Laplace transform if τ\tau \to \infty?
  4. How would f(t)f(t) be represented in the frequency domain?
  5. Can this result be used for convolution integrals?

Tip: Use properties of the Laplace transform (linearity, shifts, etc.) to speed up solving similar problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transform
Piecewise Functions
Integration

Formulas

Laplace Transform: 𝓛{f(t)} = ∫₀⁺∞ f(t) e^{-st} dt
Integration by Parts: ∫ u dv = uv - ∫ v du

Theorems

Laplace Transform Definition
Piecewise Function Integration

Suitable Grade Level

Undergraduate Level (Engineering/Mathematics)