Math Problem Statement

Find the Laplace transform of f(t) defined as f(t) = t/τ when 0 ≤ t ≤ τ and f(t) = 1 when t > τ.

Solution

The problem asks for the Laplace transform of the function f(t)f(t), which is defined as:

f(t)=tτ,when 0tτ,f(t) = \frac{t}{\tau}, \quad \text{when } 0 \leq t \leq \tau, and f(t)=1,when t>τ.f(t) = 1, \quad \text{when } t > \tau.

Solution:

The Laplace transform of a function f(t)f(t) is given by: L[f(t)]=F(s)=0f(t)estdt\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st} dt

  1. Step 1: Split the function into two parts:
    • For 0tτ0 \leq t \leq \tau, f(t)=tτf(t) = \frac{t}{\tau}
    • For t>τt > \tau, f(t)=1f(t) = 1

Thus, the Laplace transform is computed as: F(s)=0τtτestdt+τ1estdtF(s) = \int_0^\tau \frac{t}{\tau} e^{-st} dt + \int_\tau^\infty 1 \cdot e^{-st} dt


  1. Step 2: Solve the first integral: I1=0τtτestdtI_1 = \int_0^\tau \frac{t}{\tau} e^{-st} dt Let k=1τk = \frac{1}{\tau}, so f(t)=ktf(t) = k \cdot t. The integral becomes: I1=1τ0τtestdtI_1 = \frac{1}{\tau} \int_0^\tau t e^{-st} dt Use integration by parts (u=tu = t, dv=estdtdv = e^{-st} dt): testdt=[tsest]0τ+1s0τestdt\int t e^{-st} dt = \left[ -\frac{t}{s} e^{-st} \right]_0^\tau + \frac{1}{s} \int_0^\tau e^{-st} dt =(τsesτ+0s)+1s[1sest]0τ= \left( -\frac{\tau}{s} e^{-s\tau} + \frac{0}{s} \right) + \frac{1}{s} \left[ -\frac{1}{s} e^{-st} \right]_0^\tau =τsesτ+1s2(1esτ)= -\frac{\tau}{s} e^{-s\tau} + \frac{1}{s^2} \left( 1 - e^{-s\tau} \right)

Thus: I1=1τ(τsesτ+1s2(1esτ))I_1 = \frac{1}{\tau} \left( -\frac{\tau}{s} e^{-s\tau} + \frac{1}{s^2} (1 - e^{-s\tau}) \right)


  1. Step 3: Solve the second integral: I2=τestdtI_2 = \int_\tau^\infty e^{-st} dt I2=[1sest]τ=0(1sesτ)I_2 = \left[ -\frac{1}{s} e^{-st} \right]_\tau^\infty = 0 - \left( -\frac{1}{s} e^{-s\tau} \right) I2=1sesτI_2 = \frac{1}{s} e^{-s\tau}

  1. Step 4: Combine results: F(s)=I1+I2F(s) = I_1 + I_2 Substitute I1I_1 and I2I_2: F(s)=1τ(τsesτ+1s2(1esτ))+1sesτF(s) = \frac{1}{\tau} \left( -\frac{\tau}{s} e^{-s\tau} + \frac{1}{s^2} (1 - e^{-s\tau}) \right) + \frac{1}{s} e^{-s\tau}

Simplify: F(s)=esτs+1esττs2+esτsF(s) = \frac{-e^{-s\tau}}{s} + \frac{1 - e^{-s\tau}}{\tau s^2} + \frac{e^{-s\tau}}{s}

Combine terms: F(s)=1τs2(1esτ)F(s) = \frac{1}{\tau s^2} (1 - e^{-s\tau})


Final Answer:

F(s)=1τs2(1esτ)+esτsF(s) = \frac{1}{\tau s^2} (1 - e^{-s\tau}) + \frac{e^{-s\tau}}{s}


Would you like a detailed explanation of any step or a further breakdown?


Related Questions:

  1. How does the Laplace transform handle piecewise functions like this one?
  2. Why do we use integration by parts for solving the first integral?
  3. How can this solution be extended for different values of f(t)f(t)?
  4. What is the physical significance of τ\tau in this problem?
  5. How does the exponential este^{-st} affect convergence of the Laplace transform?

Tip:

Always double-check continuity and limits when working with piecewise functions in Laplace transforms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transform
Piecewise Functions
Integration by Parts

Formulas

Laplace transform: F(s) = ∫₀⁺∞ f(t) e^(-st) dt
Integration by parts: ∫ u dv = uv - ∫ v du

Theorems

Basic Laplace Transform
Linearity of Laplace Transform

Suitable Grade Level

Undergraduate (Engineering/Applied Mathematics)