Math Problem Statement

Diketahui (f ∘ g)(x) = 9x^2 - 6x - 3. Jika g(x) = 3x - 1, nilai dari f^{-1}(12) = …

Solution

Let's solve the problem.

We are given: (fg)(x)=9x26x3(f \circ g)(x) = 9x^2 - 6x - 3 and g(x)=3x1.g(x) = 3x - 1. We need to find the value of f1(12)f^{-1}(12).

Step 1: Determine f(x)f(x)

Since (fg)(x)=f(g(x))(f \circ g)(x) = f(g(x)), we substitute g(x)=3x1g(x) = 3x - 1 into f(g(x))=9x26x3f(g(x)) = 9x^2 - 6x - 3 to find f(x)f(x).

Let u=g(x)=3x1u = g(x) = 3x - 1. Then, f(u)=9x26x3.f(u) = 9x^2 - 6x - 3.

To express ff in terms of uu, solve xx in terms of uu from u=3x1u = 3x - 1: x=u+13.x = \frac{u + 1}{3}. Substitute this expression for xx back into f(g(x))f(g(x)): f(u)=9(u+13)26(u+13)3.f(u) = 9\left(\frac{u + 1}{3}\right)^2 - 6\left(\frac{u + 1}{3}\right) - 3.

Expanding and simplifying gives f(u)f(u).

Step 2: Find f1(12)f^{-1}(12)

Once

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Composition of Functions
Inverse Function
Algebra

Formulas

(f ∘ g)(x) = f(g(x))
Inverse function formula

Theorems

Inverse function theorem

Suitable Grade Level

Grades 11-12