Math Problem Statement
Найти координаты точки пересечения плоскости, проходящей через точки A = (−1, 4, 2), B = (4, 1, 5), C = (−3, 6, 1) c прямой, проходящей через точки D = (2, 2, 4), E = (26, −10, 20).
Solution
Шаг 1: Уравнение плоскости, проходящей через три точки , и
Уравнение плоскости можно найти с помощью векторного нормального произведения. Пусть точки заданы как:
-
Находим векторы и :
-
Найдем векторное произведение , которое будет нормалью к плоскости:
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Analytic Geometry
Equations of Planes
Equations of Lines
Vector Cross Product
Formulas
Equation of a plane: ax + by + cz = d
Vector cross product: n = AB × AC
Parametric equations of a line: r(t) = D + t * DE
Intersection of a line and a plane: Substitute parametric equations into plane equation
Theorems
Vector Cross Product Properties
Equation of a Plane through Three Points
Suitable Grade Level
Grades 10-12
Related Recommendation
Intersection of Plane and Line through Points A, B, C, D, and E
Find Intersection of a Plane and a Line through Points in 3D Space
Intersection of a Plane through Points A, B, C and a Line through Points D, E
Finding the Intersection of a Plane and a Line
Finding Equation of Plane through Points A(1, -1, 2), B(1, 0, 1), and C(-1, 0, 5)