Math Problem Statement

integrate {square root of (25xsquare - 4) over x] dx with hint : use substitution x = 2/5 sec titer

Solution

We are tasked with finding the integral:

25x24xdx\int \frac{\sqrt{25x^2 - 4}}{x} \, dx

Step 1: Substitution x=25secθx = \frac{2}{5} \sec \theta

Given the hint, we'll substitute x=25secθx = \frac{2}{5} \sec \theta. From this, we can compute the differential:

dx=25secθtanθdθdx = \frac{2}{5} \sec \theta \tan \theta \, d\theta

Step 2: Simplify the square root expression

Now, let's simplify the square root part of the integrand:

25x24=25(25secθ)24=25425sec2θ4=4sec2θ425x^2 - 4 = 25\left(\frac{2}{5} \sec \theta\right)^2 - 4 = 25 \cdot \frac{4}{25} \sec^2 \theta - 4 = 4\sec^2 \theta - 4

This simplifies to:

4(sec2θ1)=4tan2θ4(\sec^2 \theta - 1) = 4\tan^2 \theta

Thus, the square root becomes:

25x24=4tan2θ=2tanθ\sqrt{25x^2 - 4} = \sqrt{4\tan^2 \theta} = 2\tan \theta

Step 3: Substituting everything back into the integral

Substitute x=25secθx = \frac{2}{5} \sec \theta, dx=25secθtanθdθdx = \frac{2}{5} \sec \theta \tan \theta \, d\theta, and 25x24=2tanθ\sqrt{25x^2 - 4} = 2 \tan \theta:

2tanθ25secθ25secθtanθdθ\int \frac{2 \tan \theta}{\frac{2}{5} \sec \theta} \cdot \frac{2}{5} \sec \theta \tan \theta \, d\theta

Simplify:

2tan2θdθ\int 2 \tan^2 \theta \, d\theta

Step 4: Use the identity for tan2θ\tan^2 \theta

We can now use the trigonometric identity tan2θ=sec2θ1\tan^2 \theta = \sec^2 \theta - 1:

2(sec2θ1)dθ=2(sec2θ1)dθ\int 2 (\sec^2 \theta - 1) \, d\theta = 2 \int (\sec^2 \theta - 1) \, d\theta

Step 5: Integrate

The integral of sec2θ\sec^2 \theta is tanθ\tan \theta, and the integral of 11 is θ\theta:

2(tanθθ)+C2 \left( \tan \theta - \theta \right) + C

Step 6: Substitute back in terms of xx

Since x=25secθx = \frac{2}{5} \sec \theta, we can find:

secθ=5x2tanθ=sec2θ1=(5x2)21=25x241=25x242\sec \theta = \frac{5x}{2} \quad \Rightarrow \quad \tan \theta = \sqrt{\sec^2 \theta - 1} = \sqrt{\left(\frac{5x}{2}\right)^2 - 1} = \sqrt{\frac{25x^2}{4} - 1} = \frac{\sqrt{25x^2 - 4}}{2}

Also, from x=25secθx = \frac{2}{5} \sec \theta, we can solve for θ\theta:

θ=sec1(5x2)\theta = \sec^{-1} \left( \frac{5x}{2} \right)

Thus, the final answer is:

2(25x242sec1(5x2))+C2 \left( \frac{\sqrt{25x^2 - 4}}{2} - \sec^{-1} \left( \frac{5x}{2} \right) \right) + C

Which simplifies to:

25x242sec1(5x2)+C\sqrt{25x^2 - 4} - 2 \sec^{-1} \left( \frac{5x}{2} \right) + C

Summary of Solution:

25x24xdx=25x242sec1(5x2)+C\int \frac{\sqrt{25x^2 - 4}}{x} \, dx = \sqrt{25x^2 - 4} - 2 \sec^{-1} \left( \frac{5x}{2} \right) + C

Would you like any further details or clarification on any of these steps?

Here are 5 follow-up questions you might find useful:

  1. How do trigonometric identities like tan2θ=sec2θ1\tan^2 \theta = \sec^2 \theta - 1 help simplify integrals?
  2. What is the significance of the inverse secant function in integrals?
  3. How do we choose the right substitution for integrals involving square roots?
  4. Why do integrals often involve trigonometric substitution when dealing with quadratic expressions?
  5. Can we solve this integral using any other substitution method?

Tip: When dealing with integrals involving a2x2b2\sqrt{a^2x^2 - b^2}, consider using trigonometric substitutions involving secant, tangent, or sine to simplify the problem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution
Algebraic Manipulation

Formulas

∫ √(25x^2 - 4) / x dx
Trigonometric identity: tan^2(θ) = sec^2(θ) - 1
Inverse secant function: sec⁻¹(x)

Theorems

Trigonometric Substitution
Pythagorean Identity: sec^2(θ) - 1 = tan^2(θ)

Suitable Grade Level

Undergraduate Calculus